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Critical Behavior and Scaling in Vacuum A~isymmetric Cravitational Collapse
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We report a second example of critical behavior in gravitational collapse. Collapse of axisymmetric
gravitational wave packets is computed numerically for a one-parameter family of initial data, A
black hole first appears along the sequence at a critical parameter value p*. As with spherical scalar-
field collapse, a power law is found to relate black-hole mass (the order parameter) and critical
separation: MsH oc [p —p*~S. The critical exponent is P 0.37, remarkably close to that observed
by Choptuik. Near-critical evolutions produce echoes from the strong-field region which appear to
exhibit scaling.

PACS numbers: 04.20.Jb, 02.6Q.Cb, 04.30.+x, 97.60.Lf

Critical phenomena have recently been discovered in
classical general relativity. Using a sensitive, adaptive-
rnesh-refinement scheme, Choptuik [1] has studied spheri-
cally symmetric gravitational collapse of a massless scalar
field p(r, t) . One-parameter families of solutions Sk [p] are
numerically computed, with each family le generated by
evolving Cauchy data of initially ingoing wave packets,
or shells, of scalar field. The parameter p characterizes
the strength of the ensuing gravitational self-interaction
of the wave packet. For each family, there exists along
the sequence a critical parameter value p* that separates
supercritical solutions S[p ) p*], which contain black
holes, from subcritical solutions S[p (p*], which do not
(assuming an orientation for p). Critical behavior is ex-
hibited in solutions as p —+ p*. For p ) p* and as p —+ p*
black-hole mass is found to have a power-law dependence
on critical separation: MBH oc ~p

—p*~~. Choptuik [1]
finds a universal critical exponent P 0.37 that is inde-
pendent of initial wave packet shape. It is thereby con-
jectured that black holes of infinitesimal mass may be
created by this process. For configurations sufficiently
close to critical, p p", a (family-dependent) strong-
field region 'Rk exists (r less than some rk ~" during the
self-interaction) inside of which the scalar field oscillates
in a nearly unique fashion. The oscillations are echoes,
as the field satisfies a remarkable scaling relation

Here p and r are logarithms of proper (areal) radius r and
central proper time T: p = lnr+r and r = ln(T* T)+K, —
and T* is the finite accumulation time of the echoes and
K is a family-specific constant. 6 is a universal constant
found to be 3.4, implying that each successive echo
appears on spatial and temporal scales a factor e+
30 finer than its predecessor. Precisely critical solutions

(p = p*) are expected to yield an infinite train of echoes.
In this Letter we report a second example of critical

behavior in general relativity, found by studying collapse
of axisymmetric yravitationat wave packets. These space-
times are physically distinct (T"~ = 0), have less sym-
rnetry (one instead of two Killing vectors) than spheri-
cally symmetric scalar-field collapse, and admit a dynam-
ical degree of freedom of the gravitational field. Else-
where [2] solutions were computed of select elements of a
one-parameter family of gravitational wave packets that
demonstrate formation of black holes. Here we examine
near-critical solutions and show the existence of critical
phenomena similar to that discussed in Ref. [1].

We compute axisymmetric, asymptotically flat vac-
uum spacetimes using the 3+1 formalism [3], with the
maximal time-slicing condition and quasi-isotropic spa-
tial gauge. With 1 dynamical degree of freedom, the line
element can be put in the form

ds = —n dt +P [e ~~ (dr+P"dt) +r e "~ (d8+P dt) +e "~ r sin 8dp ], (2)

where n is the lapse function, P" and P are shift vector components, P is the conformal factor, and ri is the even-
parity "dynamical" metric function. Maximal slicing results from the condition K, = 0 on the extrinsic curvature
K'~. Numerical solutions of the following equations are computed:

K"
BgA = 'Dp[A] —gP(D"D„n+ 2D~D~n) +. nP (R"„+2R~~) + rB„P —Bsr r (3)

B(K~~ = Dp[K~ ]
—P D~D n+ n(PR4'
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and where the operator 'Vp is defined by
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'Dp[u] = —B„[r2P'u]+ . Bg[sin8P u].r sin 6

In these equations we define A = K"„+2K&~, K'~ =
(()sK'~, and DI, is the spatial covariant derivative, R'~
is the spatial Ricci tensor, A = (t) e")s, B = (() e «,
g = Bii2, and Af() and 4f are the three- and two-
dimensional, fiat-space Laplacians, respectively. An-
alytic properties of this gauge have been explored in
Refs. [4—7]. Portions of the finite difFerence method are
described elsewhere [4, 5].

Various quasilocal mass indicators (Brill, Hawking,
and Arnowitt-Deser-Misner (ADM) [4]) are used as di-
agnostics of the fidelity of the simulations. We lo-
cate [2, 8) marginally outer-trapped surfaces when they
form. Estimates of asymptotic gravitational wave forms
are extracted at finite radii by various complementary
means [7, 9, 10].

We choose Cauchy data by fixing the freely specifi-
able fields, g and K"g, to have the form of a linear
ingoing gravitational wave packet possessing quadrupo-
lar (l = 2) angular dependence. The general linear
E = 2 solution [ll] has been expressed in quasi-isotropic
gauge in Ref. [7]. This solution is determined by a
quadrupole moment I(v) of arbitrary profile, its deriva-
tives, I(i)(v):—dI(v)/dv and I(2)(v), and its integrals,
I( i)(v) = f"dv'I(v') and I 2)(v). As functions of ad-
vanced time v, g and K"g are

P I(~) I(i)
rI=~ —2 sin 8,r rs
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FIG. 1. Near-critical evolution illustrated by the time de-
pendence of the central value of the lapse function. Super-
critical (solid) and subcritical (dashed) solutions are shown
for amplitudes a = 0.9303 and a = 0.9302, respectively. A
number of oscillations occur during the period of strong self-
interaction. The solutions diverge only in the last several
oscillations, followed by exponential collapse of n in the su-
percritical case and n, ~ 1 in the subcritical case,

However, wave packets of finite amplitude confined
within a finite volume generate nonlinear Cauchy data.
Accordingly, we solve the exact Hamiltonian and momen-
tum constraints for P, A, and K&~, subject to the choice
above of r( and K"g. The nearly linear Cauchy data are
found still to generate ingoing solutions, which are dom-
inated by E = 2 angular dependence. Centered initially
about a radius rr) and confined to a width L « rti, nearly
linear wave packets have ADM mass M„& MP"'~', dif-
fering by a fraction of O(M„/ro).

We compute solutions that lie within a one-parameter
family 8[a] generated from initial E = 2 wave packets with

polynomial radial dependence of the form I( 2)(v)
ar„La[1—(v/L)2]s for ivy = (r roi &—L at t = 0. Here, a
is an amplitude parameter, L is a width parameter, and
lc„= i22ss +143/x. In the limit a —+ 0, the mass of the
wave packet is M„'"'~' = a2L/(2a). A useful alternative
strength parameter is O(a) = 2vrM„/L a .

As shown before [2], a wave packet with 0 « 1 only
weakly self-interacts, escaping to infinity virtually unaf-
fected. Conversely, a black hole forms in an evolution
where 0 & 1, with MBH —+ M„as 0 ~ oo. We find
the critical value along the sequence to be 0* 0.80
(a* 0.93). Figure 1 illustrates the behavior of two
near-critical solutions lying on either side of 0* by show-
ing the time dependence of the central value of the lapse
function.

Like Choptuik [1], in the supercritical regime (8[a
a*]) we observe that black-hole mass, MICH, is well de-
scribed by a power law

MBH ( (a —a*)~.
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Quite remarkably, the critical exponent value we obtain,
P 0.37, for gravitational wave collapse is indistinguish-
able from that seen in scalar-field collapse. Figure 2
shows the power-law behavior of black-hole mass found
in a sequence of simulations.

Determining MBH is made diKcult by the hole s initial
asymmetry, which leads to emission of quasinormal mode
(QNM) radiation as the black hole rings down [2]. By
MBH we mean the mass gA h/16vr computed from the
area of the apparent horizon A~h at a time At = 2vr/uf=~
(where cubi= is the real part of the lowest-order E = 2

QNM frequency) after the apparent horizon first appears.
In most cases extracted E = 2 and E = 4 wave forms are
fit [2] by their respective lowest-order QNM's to provide
redundant estimates of MBH.

With our present method and accessible range of res-
olution we are only able to find black holes with masses
MiiH & 0.2M„. Significantly, the scaling law (11) holds
even in this range, similar to the scalar-field case [1].
Masses MBH(a) are obtained from a sequence of simula-
tions with 290 radial and 16 angular zones and consis-
tently chosen grid properties. The data are least squares
fitted by the functional form (11) to determine a*, C,
and P, yielding a formal value P = 0.369 of the criti-
cal exponent. A fit to MpH versus 0 instead yields a
formal value P = 0.361. The critical point locations de-
rived from fitting are 0* = 0.799 and a* = 0.928, which
correspond to each other to about 1 part in 10, but
differ by 2 x 10 at this numerical resolution from
the critical point location a = 0.9302 determined by bi-
nary search of the solution space. Similarly, results from
several numerical surveys indicate P to be dependent on
grid properties and resolution. At present, we estimate

1.2

'fI(P + t ) = &(P t + ) (12)

with a single value of 6 associated with the self-
similarity. The scaling constant 6 0.6 implies a radial
scale ratio e 1.8 which differs considerably from the
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the true value of P to lie in the range 0.35 to 0.38, a span
encompassing the range found [1] for scalar-field collapse.

We observe tentative evidence for self-similar scaling
of the gravitational field in the strong-field region 'R. As
Fig. 1 indicates, the central value of the lapse, o,„os-
cillates in the strong-fi. eld regime. At times coincident
with every other maximum of e„ t = t„(o., "), we ob-
serve that a new complete oscillation, or echo, appears
in 'R. Variations in resolution indicate these features are
robust. For example, the same features appear in models
that difFer by a factor of 1.5 in both angular and radial
discretization scales. As Fig. 3 illustrates, the radial pro-
fi.les of the echoes in g exhibit approximate scaling in
p= lnr:
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FIG. 2. Critical behavior of black-hole mass. Black-hole
masses MBH derived from a sequence of simulations are plot-
ted (filled circles) as a function of initial wave packet ampli-
tude. The quasilocal (Brill) masses M~ of the wave packets
are shown (open circles) for comparison. The dotted curve
represents the best-fit power law MBH = C(a —a*) with
values a* = 0.928, C = 1.750, and P = 0.369. Wave packet
width L = 27r is chosen to normalize the mass scale.

FIG. 3. Scaling property exhibited in a near-critical solu-
tion. Data are from a subcritical numerical solution with a
critical separation (a* —a)/a* ( 10 determined by binary
search. Radial profiles of the metric function g, restricted to
the symmetry plane 8 = m/2, are plotted at four diferent
times corresponding to alternate maxima of the oscillations
in n, (see Fig. 1 and text). The upper panel depicts all four
radial profiles (labeled sequentially n = 0 —3) plotted vs

p = lnr. The two lower panels illustrate the scaling prop-
erty of the echoes by overlapping profiles that are shifted by
p + p' = p+ nA with an empirically determined scaling con-
stant of A 0.6. To enhance clarity, only profiles n = 0, 1, 2
are plotted in the bottom panel and only n = 1, 2, 3 in the
middle panel. The outer, nonscaling edge of each profile is
truncated in the two lower panels as is the inner edge of the
n = 3 profile (at which point the subcritical configuration has
begun to escape). The radial resolution of these profiles is
indicated by plotting the location of every tenth grid point.
These locations are denoted by triangles (n = 0), squares
(n = 1), circles (n = 2), and inverted triangles (n = 3).
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corresponding value of e+ 30 (6 3.4) in scalar-field
collapse.

We conjecture that in the precisely critical case (a =
a*) the gravitational field in 'R approaches a unique two-
dimensional solution as r ~ 0. Its angular properties
have not been ascertained but we do observe a distinct
train of oscillations with E = 4 angular dependence. This
8 = 4 dependence is primarily created by the nonlineari-
ties within 7Z, and is distinct from the small component of
this multipole present in the initial wave packet. Thus, a
multipole analysis may also serve as a useful diagnostic
of the self-similarity of the echoing.

How close is the association between the critical behav-
ior in these spacetimes and standard critical phenomena'?
The appearance of black holes in only those solutions
with a ) a*, and the reasonable conjecture that a hole
of infinitesimal mass appears at a = a*, suggests that
MBH plays the role of order parameter for these criti-
cal phenomena. It is interesting to note that the crit-
ical exponent associated with this order parameter lies
in a range typically observed for P in other critical sys-
tems. Choptuik [1] has shown that details inherent in the
original data are "washed out" within R in near-critical
evolutions. Information may be steadily lost with each
echo as r ~ 0 and T ~ T* and the rate of loss per
echo may depend on the value of A. An analog of the
correlation length ( in statistical systems may be the ra-
tio of the radii of the outer edge of the scaling region,
r „, and the inner edge, r„, of the innermost echo: i.e. ,

r „/r„e" . As a —+ a* an ever-larger region
(in terms of the scale r„) becomes "correlated" with self-
similar echoes and ( ~ oo.
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