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Frequency analysis is a numerical technique for studying the long-time dynamics of nearly inte-
grable Hamiltonian systems or symplectic maps over large regions of phase space. This technique
may be especially useful because of its inherent simplicity, and we demonstrate its effectiveness in
studying long-time diffusion of orbits in a simplified but nontrivial accelerator model.

PACS numbers: 03.20.+i, 02.60.—x, 05.45.4+b, 29.27.Bd

I. Introduction.—Rigorous stability theorems for
nearly integrable Hamiltonian systems [e.g., theorems of
Kolmogorov-Arnold-Moser (KAM) [1-3] and Nekhoro-
shev [4] type] have been known for some time; yet in prob-
lems of celestial mechanics, plasma confinement, or parti-
cle accelerator physics, efforts to obtain realistic stability
estimates with such theorems are generally disappoint-
ing. Even when stability theorems are carefully tailored
to specific problems and proved with computer assis-
tance, the resulting estimates usually agree only roughly
with long-time numerical computations. We present here
a relatively simple alternative, the frequency analysis
method of Laskar [5-7], which may be used to study
the long-time dynamics of nearly integrable Hamiltonian
systems or symplectic maps over large regions of phase
space. In Sec. III we apply this method to a simple ac-
celerator model that was studied extensively by Warnock
and Ruth [8,9] using refined techniques for approximat-
ing invariant tori. We have chosen this model both as a
simple prototype as well as to show how the frequency
analysis method compares with the approximate invari-
ant tori techniques. Because of its inherent simplicity,
we believe frequency analysis will prove to be a powerful
tool in long-time stability studies.

The KAM theorem asserts in part that the nearness
to integrability of a conservative system is reflected by
the existence, in its phase space, of a family of invari-
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ant tori on which integrable behavior persists. Trajec-
tories starting on a torus remain on it thereafter, exe-
cuting quasiperiodic motion with fixed frequency vector.
The family of tori is parametrized over a Cantor set of
frequency vectors, while in the ubiquitous gaps of the
Cantor set chaotic behavior can—and generically does—
occur. For systems with more than 2 degrees of freedom,
the chaotic gaps (resonant zones) merge to form an in-
terconnected web passing arbitrarily close to all points
in phase space. Arnold [10] constructed a model system
with trajectories that wander large distances throughout
this web, a phenomenon since known loosely as Arnold
diffusion. We will use the term “diffusion” to describe
the “chaotic transport” of orbits between tori, which may
be driven by mechanisms in addition to those (“transi-
tion chains, whiskered tori”) described in Arnold’s model.
Under rather mild conditions, the speed of this diffu-
sion is known to be exponentially small in the parameter
which measures closeness to integrability (Nekhoroshev
theory). Unfortunately, despite recent progress [11-13],
rigorous mathematical results are not yet refined enough
to supplant direct numerical calculation for long-time
studies of orbit diffusion.

II. The frequency analysis method—The frequency
analysis method grew out of Laskar’s studies of solar sys-
tem stability [5]. It was succesfully applied to simpler
multidimensional conservative systems [6,7], and then
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used to study the global dynamics of a four-dimensional
symplectic map and the diffusion of its orbits between
invariant tori [7]. In this respect the method is similar
in spirit to the approach taken in [8,9], where the au-
thors use numerical orbit data to compute close approx-
imations to invariant tori. These slightly deformed tori
are fixed structures of the model system, and as demon-
strated in [8,9], it is possible numerically to find them,
to straighten them out, and to interpolate between them
to form a toroidal coordinate system (action-angle vari-
ables) in which regular (quasiperiodic) motion appears
uniformly circular, and weakly chaotic motion stands out
as a slight departure. The frequency analysis method also
relies on a fixed feature of the model system, but one
which is simpler to compute, namely, the frequency vec-
tors associated with each of the invariant tori. Although
the frequencies are strictly speaking only defined and
fixed on tori, efforts to compute them in resonant regions
of phase space yield weakly time-dependent “quasifre-
quencies” which represent natural interpolations between
fixed frequencies.

To understand how the frequency analysis method
works, recall that the function f : R — C is quasiperi-
odic in time ¢ over the n-torus T™ provided there exists
a function F' : R® — C with unit period in each coordi-
nate, and a fixed frequency vector v € R", such that f
may be expressed as f(t) = F(tv). In this case f may
be written as f(t) = ZZC_’_:_OOcke“m(k)"’)t, where the ci
are complex coefficients with |cx| — 0 and (m(®) v) de-
notes the integer combination mlk vi+--+ mslk) v, of
the fundamental frequencies {v;}}_;. Given a quasiperi-
odic function f of the above form, the frequency anal-
ysis method finds an approximation f’ of the form
') = Xik<n c}cei(m(k)’”')t. Although f’ may be used
to parametrize close approximations to invariant tori, we
also recover close approximations v to the fundamental
frequencies v;, and it is these quantities that will most
interest us here.

We now describe briefly how the v} are found; more
details may be found in Refs. [5-7]. Given a quasiperi-
odic function f defined numerically over a certain time
interval (say [—T,T]), we locate the maximum of Q(w) =
e f_TT F(t)e? ™ty (t)dt using a quadratic interpolation
routine (the accuracy of this process is significantly im-
proved by the presence of an appropriate weighting func-
tion x; cf. [6]). The maximum occurs at one of the fun-
damental frequencies v;. We next project f onto e?71t
to obtain the coefficient ¢;, then subtract this projection
from f and repeat the process to obtain the next fun-
damental frequency and corresponding coefficient (sub-
sequent projections require a Gram-Schmidt orthogonal-
ization). The process terminates upon reaching the de-
sired number of terms or accuracy, or when the last deter-
mined frequency is within the main peaks of any of the
previously determined terms. The accuracy of the ap-
proximation f’ may be checked by performing a second
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frequency analysis on f’.

For an n degree of freedom Hamiltonian system (or
2n-dimensional symplectic map), the frequency anal-
ysis method establishes a map Fr R x R —
R™ [(Io,qbo;t) — 1/] which acts on initial conditions
(Io, $0) € R? for trajectories evolving over the time
interval [0,t + T]. Frequency analysis is performed on
these trajectories over the time interval [¢,t + T to yield
the frequency vector v € R™. The important point is
that, although v represents a frequency vector only for
initial conditions belonging to the set A C R?" of ini-
tial conditions which give rise to quasiperiodic trajecto-
ries, the map Fr is well defined numerically for all initial
conditions, yielding what we call “quasifrequencies” for.
initial conditions outside .A. These quasifrequencies vary
slightly with the location t of the time interval [t,¢ + T
over which they are evaluated, and their use is described
in the next section.

III. Analysis of a simple accelerator model—The ad-
vent of increasingly complex particle accelerators oper-
ating at energies in the tens of TeV demands new ap-
proaches to modeling the long-time dynamics of parti-
cle trajectories in storage rings. One such approach was
presented in [8,9]; for simplicity and for purposes of com-
parison, we apply the frequency analysis method to the
same problem. Namely, we consider the 21/2 degree of
freedom Hamiltonian H(I,¢,s) = Q(s) - I + V(I,¢,s)
(periodic in s) representing transverse betatron oscilla-
tions in a nonlinear accelerator lattice. Here I = (Iy, I3),
¢ = (¢1, p2) are action-angle variables of the linear sys-
tem Hy = Q(s) - I. The nonlinear part V, due to the
presence of sextupole magnets in the lattice, has the form
V(I,¢,s) = (1/6)S(s)(z3 — 3z123), where the horizon-
tal and vertical displacements x1,x2 of particles in the
transverse plane are given in terms of the action-angle
variables by x; = [2I;/%(s)]'/? cos ¢;. For more details
and a tabulation of the precise parameter values used in
this model, the reader may consult [9]. We note that
the actual frequencies at the origin were v, = 1.189735
and v, = 0.681 577; here we use instead f; =v; — 1 and
fa=v2 -1

Following the formalism established above, we let
(19,19, ¢9, ¢3) denote the initial conditions of a trajec-
tory at time ¢ = O (in all computations we set ¢ =
#3 = m/2), so that for a given time span 7', the map
Fr : R xR — R? [(I},19,t) — (fi,f2)] returns
the two frequencies f1, fo for the corresponding orbit at
time t, computed numerically over the interval [¢,t + T].
If the initial conditions lie on an invariant torus, the
frequencies of course remain constant with time t¢; if
not, the algorithm returns quasifrequencies which slowly
evolve with time. To make use of this map to under-
stand the dynamics, we first consider a fixed value of
t, say t = 0. This defines a reduced frequency map
F2:R? - R? [(I?,I2) — (f1,f2)] which, by KAM
theory, should be smooth on the set A (smoothness on
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FIG. 1. Image in the frequency plane (“tune space”)
(f1, f2) of the square sector 0 < I1, I, < 10™°, obtained using
frequency analysis over 4052 turns.

closed sets is defined in the sense of Whitney; cf. [14]). It
is therefore natural to expect diffusion to occur at the sin-
gularities of the map F2. As a first attempt to locate the
singularities, we take a square of regularly spaced lines of
initial conditions (ICs) in action space (I, I2) and plot
their image under F2 in frequency space (f1, f2). In Fig.
1 we plot the frequency image of a square sector of 100
regularly spaced lines in action space, each line compris-
ing 500 regularly spaced points (i.e., ICs lie on a rect-
angular mesh, with spacing 2 x 1078 in I; and 10~7 in
I,).

If the dynamics of the system were entirely regular (i.e.,
integrable), we would expect the image of the square sec-
tor to be smoothly distorted. Figure 1 shows that this is
nearly the case, except near low-order resonances, where
relatively abrupt distortions occur (the order of a given
resonant line my f1 + ma fo = mg, where the m; are in-
tegers, is ¥;|m;|). It should be stressed that the reso-
nant lines appearing in Fig. 1 are not computed before-
hand, but instead manifest themselves as irregularities
in the frequency map F2. These irregularities permit us
to compute the quantitative effect of resonances on the
dynamics of the system.

For some applications, the roughly outlined Arnold
web of Fig. 1 might suffice to determine approximately
optimal operating frequencies (f1, f2) away from strong
resonances. However, small distortions in the frequency
map are not visible in Fig. 1, so to obtain a more en-
hanced view of the resonances, and most important to
extract quantitative bounds on the rate of diffusion in
unstable regions of frequency space, we use the following
simple technique [7].

As mentioned above, Fr is not quite constant in t off
of the set A of ICs for invariant tori. To estimate its
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FIG. 2. Transport rates in the frequency plane. The speed
and location of local transport phenomena are visualized by
plotting f2 + 0.00005 log(r) against f; for the same data as
in Fig. 1, where r is the estimated local rate of transport (for
r above a given threshold).

-

change in ¢, we extend the computations used to pro-
duce Fig. 1 and thereby compute the numerical deriva-
tive %[Fr(I,13,t+T) — Fr(I7, I3,t)] [an approximation
of 2kr(19,139,1)] for the same initial conditions (I7,13)
used in Fig. 1, and for some fixed time t. We then
take (19,13, t) = max{| % (I?, I3, 1)|, 152 (19, I3, 1)|} to
be an estimate of the maximum speed of transport in
frequency space in a small neighborhood of the point
FT(I?a Ig) t)'

In Fig. 2, we display r in graphic form by adding to
the ordinate fo of Fig. 1 at each point (f1, f2) the fac-
tor 0.00005 log(r) computed at that point. This yields
a striking picture of transport phenomena concentrated
along the Arnold web, and shows that, although fast
transport is confined to the low-order resonances, sig-
nificant transport nonetheless takes place throughout an
intricate network of resonances, some of very high order.
A kind of preimage of the web in action space is shown
in Fig. 3, similarly obtained by adding to I3 the factor
0.04 log(r) computed at (I?,I9). Both Figs. 2 and 3 re-
veal the increasing effect of transport near resonances as
one moves away from the origin or its image. We be-
lieve Figs. 2 and 3 offer simple but striking pictures of
the dynamics of the model system, and that they extend
over large enough regions of frequency and action space
to indicate the global dynamics of the system.

Finally, we show how knowledge of 7 may be used to
derive simple but effective bounds on trajectories over
time intervals much longer than those available using di-
rect numerical integration. For this purpose, we cover
the sector in Fig. 1 with a regular square mesh of size
1.2x10~4. To each point of the mesh we associate an up-
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FIG. 3. Transport rates in the action plane (I1, I2) (units
are 1075). I>40.04 log(r) is plotted against I1, where r is the
estimated transport rate corresponding to the initial condition
(I1, I2) in the action plane (for r above a given threshold).

per bound on the local rate of transport over a mesh-sized
square neighborhood of that point; this estimate is sim-
ply the largest value of 7 computed in that neighborhood.
In this way we establish a system of “speed limits,” so to
speak, covering the relevant part of the frequency plane,
and we ask how far trajectories may be transported over
a given time interval subject to these limits. An answer
is provided in Fig. 4, where we illustrate “worst case”
transport in frequency space. The possible evolution of
lines of initial conditions lying along the left and lower
edges of the sector is pictured after times corresponding
to 107, 108, 10°, and 10'° turns around the accelerator.
This simulated evolution is the “worst possible” in the
sense that no attempt is made to track the direction of
transport; instead it is assumed that transport may occur
after the appropriate time interval d/2r (d = mesh size,
r =local transport speed), from each occupied point of
the mesh to the border of each of its nearest eight neigh-
bors (this is consistent with the way r is computed). In
this way, with increasing time we obtain an expanding re-
gion of mesh points necessarily containing all trajectories
starting from the original distribution.

This simulation suggests a simple procedure for deter-
mining the dynamic aperture of a particular accelerator
model. We first decide on a set of unacceptable action
values surrounding the origin, i.e., values at which par-
ticles are considered to be “lost” by reason of collision
with walls of the beam pipe, by the presence of strong
resonances, etc. We then use the image of this set in
the frequency plane as an initial distribution to simulate
worst-case transport over an appropriate time interval
(say 10® turns). The boundary of this evolution, nec-
essarily a closed curve encircling the origin, effectively
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FIG. 4. A simulation, based on frequency analysis, of
“worst case” transport in the frequency plane. The frequency
sector of Fig. 1 is divided into a mesh; to each point of the
mesh is associated an estimate of the maximum rate of trans-
port over a mesh-sized neighborhood. The initial distribution
is represented by small crosses, and its evolution after (a)
107, (b) 10%, (c) 10°, and (d) 10° turns is represented by
filled squares. The simulation represents the worst case in
the sense that no attempt is made to track the direction of
transport, and after a given time the expanding mass of filled
squares covers—and necessarily overestimates—the region of
the frequency plane accessible to any trajectory starting on
the initial distribution.

traces out the dynamic aperture: no particle beginning
inside (the preimage in action space of) this curve can
reach the set of unacceptable action values in less than
108 turns.

IV. Concluding remarks.—We have presented a simple
but effective method for visualizing the global dynamics
of nearly integrable systems, as well as for bounding the
transport of ensembles of trajectories in frequency space.
This suggests a natural way to compute the dynamic
aperture for purely Hamiltonian models of accelerator
lattices, and we are now at work on computations using
a realistic model of the Superconducting Super Collider
main ring lattice. We are also formulating a mathemati-
cal theory to support our claim that the frequency map
Fr provides a reliable means for computing the transport
speed r. This theory relies on normal forms adapted to
resonant regions of phase space, as in Nekhoroshev’s the-
orem, and should account for possible angle dependence,
as well as local variations of quasifrequencies on arbitrar-
ily fine scales of phase space.
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