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The correspondence between error-correcting convolution codes and gauge invariant spin-glass
models is used to show that the optimal way to recover the original message is by decoding at a
finite temperature T~(p) ) 0, where p is the strength of the channel noise and T~(p) the Nishimori
temperature. This improves upon the retrieval performance of the T = 0 maximal likelihood Viterbi
decoding algorithm without increasing its computational complexity. Numerical simulations support
the theory.

PACS numbers: 89.90.+n, 02.50,—r, 05.50.+q, 75.10.Hk
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A typical information processing system consists of an
information source, a coding device changing the repre-
sentation of the data according to some optimality crite-
ria, a noisy transmission channel, and a decoding device
reconstructing the original data format. This is a sim-
ple but very general model valid for many technological
applications.

Consider a message s = (si, s2, . . . , slav) consisting of N
bits s, = +1, sampled independently and identically from
the source probability distribution Ps(s) The m. essage is
sent to a receiver R through a noisy, memoryless commu-
nication channel C, which can take as input one binary
variable per v. time interval. In practice, the input vari-
able is sent as a physical signal +v. During transmission
this signal is corrupted by white noise with zero mean
and m2 variance. If the receiver R accepts only binary
inputs one can simply assume that every single bit pass-
ing through the channel is Hipped independently with
the same probability p (

&
(binary symmetric channel,

BSC). If the receiver can deal with the whole perturbed
signal with mean vs, and variance ur, the channel is said
to be Gaussian (GC). The received message will be de-
noted by cr (o., = +1, i = 1, 2, . . . , N) and the average
error probability per bit by p, (s, o.).

Encoding (decoding) is a procedure introducing (re-
ducing) redundancy so as to minimize the average error.
The rate of the code is defined as R = N/M, where M is
the length of the message after coding. The capacity of
the channel is the maximal mutual information obtain-
able from all possible source distributions Pg(s),

1C = lim —max I(s, a.)oo N I~(sq

lim —max [H(s) + H(cr) —H(s, o)], (1)~ N I, (~g

where H is the Shannon entropy. C gives the maximal
amount of information per bit which can pass through
the channel for a given noise type and strength. For the
simple channel models considered here

where h(p) = plog2p——(1 —p) log2(l —p). The fa-
mous channel coding theorem states that in the thermo-
dynamic limit N ~ oo there are codes which will saturate
the channel capacity (B —+ C ) with a vanishing average
error p, —+ 0 [1]. Unfortunately, Shannon's proof is not
constructive, nor does it consider the algorithmic com-
plexity of the encoding and decoding process. All known
codes with computationally tractable coding-decoding al-
gorithms do not saturate the channel capacity [2].

Recently, Sourlas [3] suggested a family of codes based
on gauge invariant spin-glass models. The original mes-
sage is stored as the T = 0 ground state of a spin-glass
gauge-invariant Hamiltonian and only the (binary) cou-
pling constants are transmitted over the noisy channel.
The decoded message is defined as the ground state of a
similarly structured Hamiltonian but with a set of cou-
pling constants perturbed by the channel noise. It turns
out [4] that the widely used convolution codes correspond
to one-dimensional spin-glass models with complicated
interactions. The maximum likelihood Viterbi decoding
algorithm [2] is equivalent to a transfer matrix method
for computing the T = 0 ground state.

Encoding consists thus of forming a set of coupling con-
stants p = +1 as

i refers to r, , a lattice vector in R, and n is a k-tuplet of
indices (ri, r2, . . . , rk) Obviously. , p is a binary variable
lying on the vertices of a N /R- di me nsi onal hypercube,
the coupling space. A vector (p) constructed accord-
ing to (3) is called a codeword. The Hamming distance
between two messages 8 and 6 is de6ned as

N N

d(s, b) = —) (s, —6,) = N —) s,b, .
1=1 i=1

The same definition applies to the distance between two
points in the coupling space, D((p), (K)). Hence, the
distance between a codeword generated by the message
s via Eq. (3) and an arbitrary set of couplings (K) is
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given by

D((R)sg ,= —) (Ic —v s,)
iso,

distributed according to

&(K ) = (1 &)—~(K —& ) + &~(K + & )

for a binary channel and

= —) K'+ v'+ E, (5) 1
P(K ) = exp

27l QJ

—(K —vp )z

2tU

where v = 1 for a binary channel and E is the Hamilto-
n1an

E((K), sg = —) A v si ~ (6)

Therefore, the energy of a configuration measures its
codeword's distance from a set of coupling constants
(K). The distance between a configuration s and its
own codeword (vp) is zero, so

E(s) = Ep = min E((vp), (7) = ——v

Again, v = 1 for a binary channel. By carefully elimi-
nating spurious symmetries, the ground state Eo can be
made unique. In the absence of noise, Eq. (3) maps a
message into a codeword and the minimization of the en-

ergy (6) maps back a codeword into a spin configuration.
This one-to-one mapping is shown in Fig. 1(a).

IVow switch on the noise. At the receiving end of the
channel one obtains a set of coeKcients K, all identically

ak. —+ egcrg, Vk, K —+ K e, , Vo, , (10)

where (e, = +1) is an arbitrary configuration of spins.
All configurations s' obtained from the original message
by a gauge transformation (10) have the same energy.
One can fix the gauge variables (e,) by transforming an
arbitrary message s into a ferromagnetically ordered con-
figuration s,' = 1, Vi, implying p' = 1, Vo. . In this fer-
romagnetic gauge the average error per bit (4) is simply

N

i=1

where m is the magnetization per spin of the decoded
configuration 0. Likewise, after transmission the average
energy of the original ferromagnetic message will be

for a Gaussian channel. The effect of noise is thus to
move at random the original coupling set (p) into a new
set of variables (K). The mazimat likelihood decoding
procedure [2] is then to find the codeword closest to (K),
which via (5) corresponds to minimizing the energy (6).
This is illustrated in Fig. 1(b). The main message of
this Letter is that the maximal information about the
original message can be obtained from a different type of
decoding geometry.

The energy functional E((K), cr), (6), defines a gener-
alized spin-glass model invariant under the gauge trans-
formations

EBSC ~ ( 2p) EGC (12)

implying

FIG. l. (a) The message (left) and the coupling space
(right). There is a one-to-one map between messages and
codewords (crosses) but not every coupling vector (dots) is
a codeword. d measures the distance in message, D in the
coupling space. (b) After transmission the message s "lands"
at a coupling vector (K}.The usual decoding strategy is to
look for the closest codeword. D corresponds to the minimal
energy; the ground state is o.. The maximal entropy decoding
suggested in this Letter considers all codewords contained in
the spherical shell of Df radius and dE width (shaded area).

DBSC 2 DGC ~2f ~' f

for the binary and for the Gaussian channel, respectively.
Df has a simple geometrical meaning [see Fig. 1(b)]:

it is the average distance between the original codeword
(message) and the perturbed coupling vector (K). This
distance is gauge invariant, self-averaging, and depends
only on the noise strength and the coding rate. This
suggests that instead of choosing the codeword closest to
(Kj (E = Ep) one should search for codewords whose

energy is between Ef and Ef + dE. All configurations o
whose energy matches that of the original message, (12)
are equally probable candidates for representing the origi-
nal message. This type of decoding geometry corresponds
to the principle of maximal entropy [5].
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In information theory the decoding procedure must de-
liver a unique message. This requirement is not always
feasible. For the BSC, for example, the T = 0 ground
state of (6) is macroscopically degenerate due to frustra-
tion effects. Hence, one has a large number of possible
ground states, none being "better" than the others. In
such cases one might resort to the Bayes criterion, which
suggests a majority decision for each component cr, (or
any particular "word" formed by cr, 's). Likewise, in or-
der to implement the maximal entropy decoding strategy,
one must construct for a given {K)all configurations of
spins with a fixed energy Ef and then apply a Bayesian
decision. This implies the use of the microcanonical en-
semble. In the canonical ensemble formalism the corre-
sponding procedure is to determine the temperature at
which the average energy equals Ey. Fortunately, the
solution to this problem is already known.

Several years ago, Nishimori [6, 7] made the remark-
able observation that spin-glass models which are invari-
ant under the gauge transformations (10) can be solved
analytically at special temperatures. More precisely, all
gauge-invariant physical quantities can be expressed as
averages over the quenched coupling distribution (8,9) at
the following temperatures:

=1 1 pP~ = —ln
2 p

bility p (BSC). This results on a set of couplings K2 3(k).
The energy functional is now

1V—1

)
k=2

E.=K.(k)" ».»+. + K.(k)" ».+i
(19)

@)(8, g he PEn+1(Sn, )Sn+1 iSn+2)
~ ysn~ ~n+1 ye

= A„~,@„+i(s„+i,s„+2), (20)

Note that each bulk spin is "anchored" in place by five
different couplings. Flipping one spin requires a p or-
der process at low p. A cluster of two neighboring spins
has, however, a local field of six coupling constants. If
three of those are Hipped, the cluster is free to choose
its orientation at random (frustration efFect). Hence, a
macroscopic number of spins will have a vanishing local
magnetization at T = 0. A more detailed low tempera-
ture analysis will be published elsewhere.

In order to compute effectively the local magnetiza-
tions I use a simple variant of the transfer formalism [8].
First, assume that the spin variables are summed succes-
sively from left to right. In step n one has to perform the
sum

for the binary distribution (BSC) and
'U

N— (15)

where —ln A„+z contributes to the free energy. A possible
parametrization of the vector 4 is

m, ((K),P~) = {o.,) = P& „& cr, exp( P~E)—
&

exp —~E (16)

for the Gaussian distribution (GC), where P =
&& is the

inverse temperature. At the Nishimori temperature the
internal energy (which is gauge invariant) is thus exactly
equal [6] to Ef, (12). Therefore, the loss of information
due to channel noise can be simulated by heating up the
spin-glass system to the Nishimori temperature.

This observation suggests the following strategy for
maximal entropy decoding: (a) Compute the local spin
averages

@„(s„,s„+i) = exp[ hi (n)s„+ h2 (n)s„+i
+hi)2 (n) s„s„+i] (21)

with 4& ——l. Similar expressions are used for summing
up successively the spins when starting from the right
end. The parameters hi 2 i2(n) (21) defining the right

and left vectors 4„are stored during the left and
right iterations corresponding to (20). The local magne-
tizations (m, ) (16) (or other local correlations) can be
now computed by summing up the chain as far as possi-
ble from both the left and the right end. This leads to
the expression

at the Nishimori temperature P~ with E given by (6).
(b) Apply the Hayes criterion

mi
e—PQ, yci+1

(22)

decoded
( )

As an example, consider the following B =
2 code:

.ys(k+ 1) = sf, sy+is~+2, '72(k+ 1) = sasg+2,

(17)

(18)

where the variables 8k, k = 1, 2, . . . , N, form a one di-
mensional chain with free boundary conditions. The pas-
sage of the couplings through the channel is simulated by
flipping independently the variables pz s(k) with proba-

Finally, the decoded spin is assigned the sign of the local
magnetization.

Table I contains numerical values of the average over-
lap at different temperatures and noise strengths. The
numerical values have been obtained by averaging 10 dif-
ferent transmissions of a message consisting of 105 bits.
The finite temperature decoding procedure delivers sys-
tematically better results (large overlap) than the T = 0
maximal likelihood method. The most remarkable im-
provement is observed at low noise levels. This can be
understood as follows: while at T = 0 a finite concentra-
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TABLE I. The average o erlap o = P, s',."~""s,. " ~",N ='10, and error p, as a function of noise and inverse temperature

(P~ =
2 ln "). The average is taken over ten independent transmissions. Each single run provides the same temperature

dependence. e —n denotes x10

p = 0.025

p = 0.05

p = 0.075

p = 0.100

2 = 0.125

7 = 0.150

P 1832
o 99945 + 5.68

p, 0.275e-3
P 14.722
o 98844.2 + 9.57

p, 0.577e-2
P 1256
o 94429.4 + 33.2

p, 0.0279
P 10.99
o 87512.8 + 48.5

p, 0.0624
P 9.73
o 78609.8 + 89.3

p, 0.107
P 867
o 66208.6 + 112.5
p, 0.169

3.66
99963 + 2.38

0.185e-3
2.94

98824.6 + 9.42
0.588e-2

2.51
94437.4 + 32.0

0.0278
2.20

87517.6 + 48.58
0.0624
1.95

78732.4 + 93.18
0.106
1.73

66364.2 + 109.8
0.168

1.5/x
2.75

99963 + 2,38
0.185e-3

2.21
98824.6 + 9.42

0.588e-2
1.88

94477.55 + 30.9
0.0276

1.65
87567.4 + 50.3

0.0622
1.46

78852 + 96.86
0.106
1.30

66676.4 + 105.6
0.167

1.83
99963 + 2.38

0.185e-3
1.47

988834.2 + 9.68
0.583e-2

1.26
94519.4 + 32,3

0.0274
1.10

87590.8 + 48.3
0.0620
0.97

78875.4 + 109.3
0.1056
0.87

66951 + 93.7
0.165

1,37
99963 + 2.38

0.185e-3
1.10

98880.6 + 8.98
0.56e-2

0.94
94481.8 + 32.3

0.0276
0.82

87309.6 + 40.52
0.0635
0.73

78329.8 + 92.43
0.108
0.65

66178.2 + 78.9
0.169

0 5'
0.92

99972 + 2.98
0.140e-3

0.74
98786 + 38.1

0.61e-2
0.63

93589.2 + 28.3
0.0321
0.55

85213.2 + 42.38
0.0739

0.49
73752.4 + 94.71

0.131
0.43

60739.4 + 68.45
0.196

tion of spins is free to flip due to frustration effects, the
Bnite temperature entropy provides an effective stabiliz-
ing field. The results obtained at low p suggest that the
optimal decoding temperature should be higher than Tiv.
However, for values of p below 0.05 (ps ( 1.25 x 10 )
the chain is too short for generating a statistically reli-
able number of events. The results obtained for p ) 0.05
clearly show that the best overlaps are obtained at the
Nishimori point and that the error increases steeply at
higher temperatures.

It is worthwhile remarking that around p = 0.13 the
code (18) loses its error correcting ability. The convolu-
tion codes correct errors by spreading the local spin in-
formation over the range of the couplings. As p increase,
so does the typical correlation length associated with the
disorder. When the mean cluster size of the flipped cou-
plings becomes of the same order of magnitude as the
maximal interaction range, the coding fails. This sug-
gests the presence of a geometric phase transition in the
coding ability of convolution codes.

The convolution code (18) does not have a particu-
larly good performance, especially not in the BSC setup.
It was used here only as an example substantiating the
claim that the transmission error is systematically re-
duced by decoding at finite temperature. Since the
Viterbi decoding algorithm is itself equivalent to a one-
dimensional transfer matrix method, this performance
improvement comes at no additional computational cost.

Sourlas [4] has developed coding schemes based on
large non-Abelian alphabets and suggested simulated an-
nealing as a possible decoding procedure. The results
presented in this Letter indicate that a simple Monte

Carlo simulation at the Nishimori temperature combined
with a Boltzmann factor weighted Bayes majority rule
might function rather well as decoding algorithm. The
above theory applies also to many signal processing ap-
plications, like image reconstruction with the random
Markov fields method.

Further work is needed in order to analyze and design
codes which are well suited for error correction at rela-
tively high noise levels. It seems also possible that bio-
logical systems use extensively this type of thermalized
information extraction.

I am indebted to Robert Nemeth for a long collabora-
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and his encouragement. My stay in Tel Aviv was made
possible by a Grant from the German —Israeli Foundation
for Scientific Research and Development.
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