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Possible Realization of Odd-Frequency Pairing in Heavy Fermion Compounds
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Using Majorana fermions to represent spins we reexamine the Kondo lattice model for heavy fer-

mions. The simplest decoupling procedure provides a realization of odd-frequency superconductivity,
with resonant pairing and surfaces of gap zeros. Spin and charge coherence factors vanish linearly with

the energy on the Fermi surface, predicting a linear specific heat, but a T NMR relaxation rate. Possi-

ble application to heavy fermions is suggested.

PACS numbers: 75.20.Hr, 75.30.Mb, 75.40.6b

Though a decade and a half has passed since the
discovery of the heavy fermion metals and superconduc-
tors [1,2], many experimental anomalies remain. While
the basic theoretical picture of resonantly scattered con-
duction electrons forming a highly renormalized f band is

not in question, certain experimental features fit awk-
wardly into the standard model [3-7]. The underlying
nature ol' the interactions [8], the nature of the pairing
[9], and the excitation spectrum of heavy fermion insula-
tors [10] are three areas of continuing uncertainty.

Conventional approaches to heavy fermion physics
represent the f moments as fermions by entorcing a
"Gutzwiller constraint" of unit occupancy nf = I at each
site. This requires a projection of the physical Hilbert
space of the local moments from the larger Hilbert space
of pseudo fermions: a task that is di%cult to do exactly,
and usually only treated on the average. In this Letter
we examine an approach to a simple Kondo lattice model
f'or heavy fermions that avoids these difhculties.

Various new features are predicted that differ qualita-
tively from the standard model of heavy fermion behav-
ior; most notably a development of strong correlations be-
tween the spin and pair degrees of freedom, forming a
ground state where the conduction electrons experience
frequency dependent or "resonant" triplet pairing. The
pairing fields actually diverge at low frequencies as the
inverse frequency, providing a first stable realization of
the phenomenon of odd-frequency pairing originally con-
sidered by Berezinskii [11,12]. For a wide range of con-
ditions, including the presence of spin-orbit coupling, this
theory predicts surfaces of gapless excitation s, and a
linear specific heat that survives in the superconducting
state. Unlike a conventional superconductor, the charge
and spin coherence factors vanish on the pseudo Fermi
surface, giving rise to a T NMR relaxation. In this
scenario, the linear specific heat anomalies often observed
in heavy fermion superconductors [13] might be inter-
preted as intrinsic.

A key feature of our approach is the use of a special
anticommuting representation of spin- 2 operators to de-
scribe the magnetic excitations within the low-lying crys-
tal field doublets of the heavy fermion ions [14]. Recall
that for individual 5= 2 objects, the Pauli matrices are

from which the spin operator at each site is constructed

S~= 2 lg~xg~. (2)

This "Majorana" representation of spin- —, operators has
a long history [15] in particle physics. Loosely speaking,
the Majorana fermions may be considered to be lattice
generalizations of anticommuting Pauli operators g~
=(I/J2)crj There .is no constraint associated with this
representation, for the spin algebra and the condition
5=

2 are satisfied at each site, between all states of the
Fock space [16,17]. 1 n momentum space, the Bloch—ik Rjwaves, gk =gjtije ' behave as conventional comPlex
fermions, but since gk =g —k, the momentum lies in one
half of the Brillouin zone. Finally note that since there is

no constraint, the trial ground-state energy obtained from
trial Hamiltonian is a strict t ariational upper bound on

the true ground-state energy.
Our basic model for a heavy fermion system is a spin-

Kondo lattice model, with a single band interacting
with local f moments Sj in each unit cell. Our simplified
Hamiltonian is written

H = H, +g H;„ [jt] . (3)

Here H, =gektirkyk describes the conduction band, and

I//k (I/lkt, I//kt) is a conduction electron spinor. The ex-
change interaction at each site j is written in a tight bind-

ing representation as

Hint[J�]
=J (titja~aptilj p) ' Sj 2 Jtit j [oj '

Qj ] ttrj
2

In a real heavy fermion system, we envisage that the in-

dices would refer to the conserved pseudospin indices of

anticommuting variables [o„,ot, I =26,b and consequently
can be treated as real or Majorana (o. =a) Fermi fields.
Their Fermi statistics alone guarantee that the spin

operator S =
4 i ax cr satisfies both the SU(2) algebra

[S',S ] =ie,t„S' and the condition S = —,
'

. This feature
can be generalized to many sites, introducing a set of
three component anticommuting real vectors g; at each
site i,

{rl,a, tlj"I =6;j6'" (gj'=rijt') (a, b =1,2, 3)
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the low lying magnetic manifold. We have suppressed
both the momentum dependence and anisotropy of the
coupling, using ia ("rixrI) =[rI a] —

—,
' to simplify the

interaction.
We may now write the partition function as a path in-

tegral, Z =Jpe
' '

where

Z Ykdr Yk+ Z rikc)r gk+ Hc+ Z +ini[J] .
k& 2BZ

Here we have factorized the interaction in terms of a
fluctuating two-component spinor V/t = (Vl*, Vi*)

zo

1y/= {g/+I@/ cr] . o,
2

the mean field Hamiltonian takes the simple form

HMF 2 {&krak Zk+I V[rlk jk c.c ]+&k&k]
kE 2BZ

(io)

where

Writing the conduction electron spinors in terms of their
four real components g (k) (X =0, 1,2, 3)

1[j]=et(a' g/) V/+ Vt(a'rI, )y, +21 V/I /J.
/tk =i[(xk Xk+Zk Xk) —c c ] (i 2)

We are particularly interested in examining static mean
field solutions where

is the number operator of the state k, written in the four-
component basis, and

zjtV/=, z/tz/ =1.
/I

1

ck 2 (&k+Q/2 & —k+Q/2) ~

(i3)
To gain insight into this mean field theory, let us in-

tegrate out the localized spin degrees of freedom, repre-
sented by the Majorana fermions. This introduces a reso-
nant self-energy into the electron propagators, containing
an isotropic component that builds the renormalized
heavy fermion band and an anisotropic term, compactly
represented by the efrective action ' 2

- i/2

+k 2 (&k+Q/2+ & —k+Q/2)

where the last equality holds only for a tight binding
model. Let us begin by considering the special case of
half filling (p =0), for in this case the Hamiltonian is di-
agonal in the Majorana components X, with excitation en-
ergies

Ãk, [ co+~k+~(co)]Yk, +~a,
lk, I'co„l

Eg( =
2

+ p2
2

(i =1,3),

where h(co) = V /2co determines the strength of the reso-
nant scattering. The anisotropic term 5, is written in a
tight binding basis as

5, = —g {y/t„[1+b,"a] y,

+ [l/f/ —~[lcrzcr d/] l/// ~+c.c.]I .

(8)

Here the triad of orthogonal unit vectors b=z az, d
=x+iy=z [icr2a]z define the orientation of the order
parameter. The quantities

B (co)= b A (co)= d
2 ' '"

2

may be interpreted as resonant Weiss and triplet pairing
fields, respectively. Unlike earlier realizations of odd-
frequency triplet pairing [11,12], here the odd-frequency
pairing field diverges at zero frequency, coupling spin and
triplet pair degrees of freedom in one order parameter.

To simplify further discussion, we consider the case of
a bipartite lattice. Here, a stable mean field solution is
obtained with a staggered order parameter, where for ex-

. R
ample b is constant, and d=e 'do is staggered com-
mensurately with Q = (/r, /r, rr). In this case the spinor

iQ Rj/2
zj =e ' zO, where

~kO &k ~

[(co ek A(co)(l r 1)] ' (a'= t ),
6 (co, k) ='

[(co —c'k —24(co)] ' (cr = J ), (is)

where t k=1'k —pr 3. The density of states for the "up"
electrons is

'
2 / (I +/ ~/[ 4 V'+/ '~'] '")

,p(l I

corresponding to three hybridized gapful branches and a
fourth gapless Majorana mode formed from a component
of the conduction band that does not mix with the local
moments. With one unpaired Majorana fermion per unit
cell, the corresponding Fermi surface ek =0 spans precise-
ly one half' of the Brillouin zone: VFs/(2z) = —,

'
. This

counting argument guarantees that the gapless Fermi
surface persists in the presence of particle hole asym-
metry (p &0) or a spin-dependent kinetic energy associat-
ed with spin-orbit coupling.

For our particular choice of zo, the up electrons are
"paired, " while the "down" electrons are unpaired with a
gapped excitation spectrum (I ig. I). In a Nambu nota-
tion, their propagators are
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is topologically stable.
Several questions of a technical nature surround our

simple mean field theory. One performance benchmark
of our mean field theory is provided by the one impurity
Kondo model: Here we may compare its performance
with the exact results and the well established large A'

mean field theory (MFT) [3]. For this model, the Ma-
jorana MFT correctly yields a unitary tr/2 phase shift for
the scattered electrons; it also predicts an enhanced iso-
tropic susceptibility and linear specific heat: features
consistent with the Fermi liquid fixed point. The mean
field Wilson ratio g/y = 8/3 compares more favorably
with the exact value 2/@=2 than the large N MFT,
where (g/y)tv = l. As in the large N approach, RPA
fluctuations of the phase variables develop power-law
correlations in the mean field order parameter. Unlike
the large IV approach, power-law correlations are physi-
cally manifested as long-time correlations of the physi-
cal spin-pair operator M(t) =S(t)tlat(t)tlti(t) cc V(t)
x tT2a V(t) Verific. ation of power-law pair correlations
(M(t)M(0)) —t ' (a —1) would provide an independent
test of incipient odd-frequency pairing in the Kondo im-

purity model [20]. Beyond the one impurity model, it
remains to be seen whether our approach can also recover
the normal phase by a careful treatment of these fluctua-
tions.

Experimentally, the strong frequency dependence of
coherence factors in our theory may help reconcile the
observation of large linear specific heats and thermal con-
ductivities in heavy fermions superconductors with the
consistent absence of a corresponding Korringa NMR re-
laxation normally associated with gapless superconduc-
tivity.

In conclusion, we have examined an alternative treat-
ment of the Kondo lattice model for heavy fermions that
uses a Majorana representation of the spins. Our theory
predicts a low temperature ground state with odd-
frequency triplet pairing and surfaces of gapless neutral
excitations. Spin and charge coherence factors vanish on
the Fermi surface, predicting an intrinsic thermal con-
ductivity and linear specific heat that coexist with a T
NMR relaxation rate. Independently of these issues, it

provides a first stable realization of Berezinskii s odd-
frequency pairing.
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