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Possible Realization of Odd-Frequency Pairing in Heavy Fermion Compounds
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Using Majorana fermions to represent spins we reexamine the Kondo lattice model for heavy fer-
mions. The simplest decoupling procedure provides a realization of odd-frequency superconductivity,
with resonant pairing and surfaces of gap zeros. Spin and charge coherence factors vanish linearly with
the energy on the Fermi surface, predicting a linear specific heat, but a 7> NMR relaxation rate. Possi-

ble application to heavy fermions is suggested.

PACS numbers: 75.20.Hr, 75.30.Mb, 75.40.Gb

Though a decade and a half has passed since the
discovery of the heavy fermion metals and superconduc-
tors [1,2], many experimental anomalies remain. While
the basic theoretical picture of resonantly scattered con-
duction electrons forming a highly renormalized f band is
not in question, certain experimental features fit awk-
wardly into the standard model [3-7]. The underlying
nature of the interactions [8], the nature of the pairing
[9], and the excitation spectrum of heavy fermion insula-
tors [10] are three areas of continuing uncertainty.

Conventional approaches to heavy fermion physics
represent the f moments as fermions by enforcing a
“Gutzwiller constraint™ of unit occupancy ny=1 at each
site. This requires a projection of the physical Hilbert
space of the local moments from the larger Hilbert space
of pseudo fermions: a task that is difficult to do exactly,
and usually only treated on the average. In this Letter
we examine an approach to a simple Kondo lattice model
for heavy fermions that avoids these difficulties.

Various new features are predicted that differ qualita-
tively from the standard model of heavy fermion behav-
ior; most notably a development of strong correlations be-
tween the spin and pair degrees of freedom, forming a
ground state where the conduction electrons experience
frequency dependent or “‘resonant” triplet pairing. The
pairing fields actually diverge at low frequencies as the
inverse frequency, providing a first stable realization of
the phenomenon of odd-frequency pairing originally con-
sidered by Berezinskii [11,12]. For a wide range of con-
ditions, including the presence of spin-orbit coupling, this
theory predicts surfaces of gapless excitations, and a
linear specific heat that survives in the superconducting
state. Unlike a conventional superconductor, the charge
and spin coherence factors vanish on the pseudo Fermi
surface, giving rise to a T3 NMR relaxation. In this
scenario, the linear specific heat anomalies often observed
in heavy fermion superconductors [13] might be inter-
preted as intrinsic.

A key feature of our approach is the use of a special
anticommuting representation of spin-% operators to de-
scribe the magnetic excitations within the low-lying crys-
tal field doublets of the heavy fermion ions [14]. Recall
that for individual S = § objects, the Pauli matrices are
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anticommuting variables {o,,0p} =28, and consequently
can be treated as real or Majorana (6" =0) Fermi ficlds.
Their Fermi statistics alone guarantee that the spin
operator S= JioX o satisfies both the SU(2) algebra
[S“.S*1 =i€ueS° and the condition S*= ¢ . This feature
can be generalized to many sites, introducing a set of
three component anticommuting real vectors n; at each
site 7,

el =66 (nf=nf (a,p=1,2,3) (1)
from which the spin operator at each site is constructed
Sj=;’fﬂjxnj. (2)

This “Majorana” representation of spin-3 operators has
a long history [15] in particle physics. Loosely speaking,
the Majorana fermions may be considered to be lattice
generalizations of anticommuting Pauli operators n;
E(l/\/—i)oj. There is no constraint associated with this
representation, for the spin algebra and the condition
S =1 are satisfied at each site, between all states of the
Fock space [16,17]. In momentum space, the Bloch
waves, nx=2.;n;€ ~'*R, behave as conventional complex
fermions, but since n;{=n_k, the momentum lies in one
half of the Brillouin zone. Finally note that since there is
no constraint, the trial ground-state energy obtained from
a trial Hamiltonian is a strict variational upper bound on
the true ground-state energy.

Our basic model for a heavy fermion system is a spin-
+ Kondo lattice model, with a single band interacting
with local f moments S; in each unit cell. Our simplified
Hamiltonian is written

H=H.+2 Hinlj]. (3)
J

Here H,=Zeky/f{v/k describes the conduction band, and
wi =(yi1.vi)) is a conduction electron spinor. The ex-
change interaction at each site j is written in a tight bind-
ing representation as

Hinlj] =J(n//)‘,,o,,;;v/,-ﬁ)-SjH - ;—JW}[O‘j‘ ﬂj]zl//j .

In a real heavy fermion system, we envisage that the in-
dices would refer to the conserved pseudospin indices of
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the low lying magnetic manifold. We have suppressed
both the momentum dependence and anisotropy of the
coupling, using io- (nxn) =I[n-61>— 3 to simplify the
interaction.

We may now wrlte the partition function as a path in-
tegral, Z = [ pe Je Lz where

L(z)= ZV’kar'I’k+ Z nid.m+H. +ZH.m[/]
ke 1Bz

(4)

Here we have factorized the interaction in terms of a
fluctuating two-component spinor V[ =(V§, V)
Hinljl=y](c-n)V,+V (e -0y +2|V,|*J. (5)

We are particularly interested in examining static mean
field solutions where

Vj=

% Zle’ ijzj=l. (6)
To gain insight into this mean field theory, let us in-
tegrate out the localized spin degrees of freedom, repre-
sented by the Majorana fermions. This introduces a reso-
nant self-energy into the electron propagators, containing
an isotropic component that builds the renormalized
heavy fermion band and an anisotropic term, compactly
represented by the effective action

Se= Y viJ—o+e+a(w)]lyrotS,. (7
k.iw,
where A(w) =V?/2w determines the strength of the reso-
nant scattering. The anisotropic term S, is written in a
tight binding basis as

Alw)
S = —
¢ u..-zwnx 2

{wfoll+b; - oly,.,

+ly; -wlico-d;ly; o tccl}.
(8)

Here the triad of orthogonal unit vectors b=z%oz, d
=X+iy=z:"Tlic,0]z define the orientation of the order
parameter. The quantities

Alw) 2
2

may be interpreted as resonant Weiss and triplet pairing
fields, respectively. Unlike earlier realizations of odd-
frequency triplet pairing [11,12], here the odd-frequency
pairing field diverges at zero frequency, coupling spin and
triplet pair degrees of freedom in one order parameter.

To simplify further discussion, we consider the case of
a bipartite lattice. Here, a stable mean field solution is
obtamed with a staggered order arameter, where for ex-
ample b is constant, and d=¢' R"(io is staggered com-
mensuratelg/ with Q={(m,z,x). In this case the spinor
zj=e R/ 6. where

B, () =205, a0 = 21204, ©)

1
0

Zo=

Writing the conduction electron spinors in terms of their
four real components y*(k) (A =0,1,2,3)

e
v, =
T2
the mean field Hamiltonian takes the simple form

Hup= 2

ke 1BZ

—{x)+ix;- olzo, (10)

{axdtd+ivind pw—cel+amd, 1)

where
ST+ x2t) —c.c.l (12)

is the number operator of the state k, written in the four-
component basis, and

ne=il(xi'x

&= 7 (ex+Qr — €—k+Q/2) ,
13)
ak =7 (ex+Qnte—x+Qn) = —u,

where the last equality holds only for a tight binding
model. Let us begin by considering the special case of
half filling (u =0), for in this case the Hamiltonian is di-
agonal in the Majorana components A, with excitation en-
ergies

- - 2
k €k
- |3

+v?

1/2
(i=1,3),

(14

Eyo=éx,

corresponding to three hybridized gapful branches and a
fourth gapless Majorana mode formed from a component
of the conduction band that does not mix with the local
moments. With one unpaired Majorana fermion per unit
cell, the corresponding Fermi surface éx =0 spans precise-
ly one half of the Brillouin zone: Vgs/(27)*=%. This
counting argument guarantees that the gapless Fermi
surface persists in the presence of particle hole asym-
metry (u#0) or a spin-dependent kinetic energy associat-
ed with spin-orbit coupling.

For our particular choice of zg, the up electrons are
“paired,” while the “‘down” electrons are unpaired with a
gapped excitation spectrum (Fig. 1). In a Nambu nota-
tion, their propagators are

[(w—ex—Alw)U =217 (o=1),
G"(w'k)={[(w—gk—2A(w)] -1 (o=]), (15)
where ex=¢éx —uz 3. The density of states for the “up”
electrons is

LpU+pw/lEVi+u?0?1'?) (Jo| < Tk),
T(“’)={p (ol > T4)

(16)
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FIG. 1. Excitation spectrum of mean field theory for u =0,
showing threefold degenerate gapped excitations and a gapless
Majorana band. Inset: Conduction electron density of states
for up (1) and down (] ) electrons.

where Tx =V2/D[1 —(u/D)?] is the indirect gap associ-
ated with the excitation spectrum (14).

Unlike conventional pairing, the charge and spin coher-
ence factors of these ‘‘Majorana™ quasiparticles are
strongly energy dependent. Near the Fermi surface, the
gapless quasiparticle operators can be written as

a7

where Z ~'=1+u?/V?isa quasiparticle renormalization
constant and the Bogoliubov coefficients are determined
by u 24 p2=],

aly =Z " luyily + oy g1+ (= 2) ' 2piy

, 1 usgn(Ey)
uk=—|l+————5—5 1. (18)
2 [ [ACE) 2+ 212
Spin and charge coherence factors are then given by
(k" |pglk ™
k~lozlk ) | T2 et~ ee-vie]
Z
=(Ek++Ek-)—V%. (19)

These quasiparticles thus form a pseudogap where spin
and charge matrix elements vanish on the Fermi surface
and grow linearly with energy. In the special particle-
hole symmetric case (¢ =0), these coherence factors van-
ish throughout the gap, forming a neutral band of excita-
tions that only conduct heat. Since the paramagnetic
spin and charge response functions of the quasiparticle
fluid are proportional to the square of these matrix ele-
ments, the corresponding local response functions grow
quadratically with energy

2
Hz
D
This unusual energy dependence of matrix elements per-

mits this state to mimic one with constant coherence fac-
tors, but a /inear density of states (line of gap zeros).

2
[

Zs/;),ch(w) o« |
Tk

(0]

(20)
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We briefly list the main consequence of these results:
(i) A large quasiparticle thermal conductivity in the ab-
sence of a quasiparticle contribution to the thermopower
and electrical conductivity. (ii) Linear specific heat
coefficient of magnitude y= % y,(1+u?/V?) where y, is
the linear specific heat in the absence of the local mo-
ments. As u varies y can vary between values charac-
teristic of a conventional metal, and values characteristic
of a heavy fermion metal. (iii) A 73 component to the
NMR relaxation rate superimposed upon an activated
background;

2 2 2,,2
e T P Ly Y A Q1)
T T? 6 ye

Since the spin matrix elements (¢|S * |e) =0, the T3
response is anisotropic and vanishes when the applied
field is parallel to the b axis.

Finally, we should like to mention the collective proper-
ties of this state. Some past studies of odd-frequency
pairing have encountered a negative phase stiffness [18].
In our mean field theory, the phase has “coiled up” into a
staggered configuration: This stabilizes the state and de-
velops a positive phase stiffness. To compute the London
response to a vector potential A, we replace ex— €x—cAr,.
The London kernel A, =V3 4,F[A] is then

2.2
e l‘FT
A=~—

2 Trl94 (k)2 =84 (k) 7394 () 73],  (22)

where the minus sign is a result of the staggered phase.
Carrying out the energy integral at 7=0

_ Ne? (T« Alw)?
A 4m -J:) do [A(w)2+y2] 3/2

where we have set N/2m= ¥ pvf. 1n the special case of
u=0, this integral simplifies to A=(Ne?/m)(Tx/4D).
This small phase stiffness is consistent with the large
coherence lengths X[2=u0/\ of heavy fermion supercon-
ductors, and may be regarded as a consequence of a con-
densation of “heavy electrons” with mass m™* =mD/Tk.
Macroscopic properties of the paired state are governed
by slow rotations of the order parameter. In the absence
of anisotropy, the long-wavelength action is spin rotation-
ally invariant, given by a U(1)charge XSU(2)5pin sigma
model. Despite the phase stiffness, it cannot support a su-
percurrent without anisotropy. Spin isotropy means that
the vacuum is not topologically stable against the
creation of vortex pairs of the same sign: Uniform gra-
dients of the phase can continuously develop to cancel an
externally applied vector potential by twisting the order
parameter “into the third dimension” [19]. The phase
stiffness does guarantee a Meissner phase where fluxoids
cannot penetrate, but an absence of topological stability
means there is no rigidity to the flux phase. Anisotropy
will stabilize the flux phase by aligning the order parame-
ter with the crystal axes, lowering the symmetry to a
U(l)c,mrge X-Y model, where a macroscopic supercurrent

(23)
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is topologically stable.

Several questions of a technical nature surround our
simple mean field theory. One performance benchmark
of our mean field theory is provided by the one impurity
Kondo model: Here we may compare its performance
with the exact results and the well established large N
mean field theory (MFT) [3]. For this model, the Ma-
jorana MFT correctly yields a unitary n/2 phase shift for
the scattered electrons; it also predicts an enhanced iso-
tropic susceptibility and linear specific heat: features
consistent with the Fermi liquid fixed point. The mean
field Wilson ratio y/y=8/3 compares more favorably
with the exact value y/y=2 than the large N MFT,
where (y/y)n— =1. As in the large N approach, RPA
fluctuations of the phase variables develop power-law
correlations in the mean field order parameter. Unlike
the large NV approach, power-law correlations are physi-
cally manifested as long-time correlations of the physi-
cal spin-pair operator M) =Sy (D y () < V(1)
x o0V (t). Verification of power-law pair correlations
(M(E)M(0))~1t ~* (a~1) would provide an independent
test of incipient odd-frequency pairing in the Kondo im-
purity model [20]. Beyond the one impurity model, it
remains to be seen whether our approach can also recover
the normal phase by a careful treatment of these fluctua-
tions.

Experimentally, the strong frequency dependence of
coherence factors in our theory may help reconcile the
observation of large linear specific heats and thermal con-
ductivities in heavy fermions superconductors with the
consistent absence of a corresponding Korringa NMR re-
laxation normally associated with gapless superconduc-
tivity.

In conclusion, we have examined an alternative treat-
ment of the Kondo lattice model for heavy fermions that
uses a Majorana representation of the spins. Our theory
predicts a low temperature ground state with odd-
frequency triplet pairing and surfaces of gapless neutral
excitations. Spin and charge coherence factors vanish on
the Fermi surface, predicting an intrinsic thermal con-
ductivity and linear specific heat that coexist with a 73
NMR relaxation rate. Independently of these issues, it
provides a first stable realization of Berezinskii’s odd-
frequency pairing.
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