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Localization Transition in a Random Network of Metallic Wires:
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We consider the Anderson metal-insulator transition in a network of randomly coupled metallic
wires, which is suggested to describe transport properties of highly conducting fibril-form polymers.
The absence of closed paths in the model enables us to study the transition exactly. The critical
concentration of the cross-links determining the transition depends on the localization length of a
single wire and on the interwire coupling. Application of a magnetic field extends the area of the

metallic phase.

PACS numbers: 71.20.Hk, 71.30.+h, 72.15.Rn

Recently, conjugated polymers such as polyacetylene,
polyaniline, and polypyrrole have attracted considerable
interest in applied and fundamental research [1,2]. Their
common exciting feature is that the conductivity can be
increased by a few orders of magnitude upon doping.
In heavily doped Tsukamoto polyacetylene the room-
temperature conductivity (orr) has already reached that
of Cu. However, in spite of the large orT, transport
properties of these conducting polymers are still far from
being traditionally metallic.

First of all, in contrast to metals, the conductivity of
the polymers decreases with lowering the temperature.
Depending on ogrr (i.e., on the level of doping and the de-
gree of disorder) this decay varies from an activation-type
behavior to a weak logarithmic one. For the most highly
conducting samples the conductivity even approaches a
residual value at low temperatures [2-4]. At the same
time their thermoelectric power and Pauli susceptibility
suggest a metallic density of states at the Fermi level
in the whole temperature interval. It is noteworthy also
that at low temperatures there is a significant magne-
toresistance [3,4] and its sign correlates with the above
temperature dependence of conductivity, being negative
for highly conducting samples.

On the basis of these observations it was suggested
[3-6] that the highly conducting polymers are close to a
metal-insulator (MI) transition driven by disorder. Since
their orT greatly exceeds those of all known systems near
the MI boundary, one can conclude also that the highly
conducting polymers exhibit a new type of localization-
delocalization transition.

For a physical explanation of the unusual transport
properties of the polymers their chain nature seems to
be very important. Electrons move primarily along poly-
mer chains over large distances without scattering, hop-
ping sometimes between neighboring chains. Therefore,
existing theoretical considerations were based on models
of either highly anisotropic dirty metals [4,7], or a quasi-
one-dimensional system of weakly coupled chains [3,8].
The direct application of these results to polyacetylene
requires a very high anisotropy of the conductivities [4,9).

However, this basic assumption of high anisotropy, based
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on a regular arrangement of chains, is violated in the
polymers.

It is common knowledge that the polymers represent a
very irregular structure of interacting chains, whose de-
scription and classification are a subject of current stud-
ies [10]. The most well-known polymer, polyacetylene [1],
has a so-called fibril structure: single chains are coupled
into fibrils which occupy a part of the whole volume. The
fibrils are bent in the space in a very complicated way.
They come in contact with each other forming a random
cross-linked network. The fibril structure is schematically
illustrated in Fig. 1.

At first glance the “spaghetti” morphology makes the
evaluation of the transport properties for the polymers
practically untractable and until now their quantitative
description has not been attempted. In this Letter we
present for the first time an original model for the study
of the kinetics in such irregular structures. To define our
model we assume that each fibril is a weakly disordered
metallic wire and that the cross-links between the fibrils
can be described by interwire junctions. As a result,
we have a network of randomly coupled metallic wires.

FIG. 1. Schematic view of the fibril structure of polymer.
The rings indicate the interfibril cross-links.
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In the absence of the junctions all the electronic states
of the wires are localized by any weak disorder [11,12].
The states become extended over the whole network only
for strong enough interwire electron transfers. Within
the present model we determine the position of the MI
transition and the critical behavior as a function of the
intrinsic disorder and of the interwire coupling.

We would like to emphasize that the existence of the
delocalized phase in the network is a nontrivial phe-
nomenon. Indeed, due to its irregularity, the random
network should be considered as strongly disordered, and
therefore all the electronic states might remain local-
ized. However, it is not so and we prove the existence
of the MI transition in the network. Whether the elec-
tronic states are localized or extended emerges only in
the low-temperature conductivity. At high temperatures,
due to inelastic scattering, electrons are delocalized, and
the network always demonstrates a metallic conductivity
even in the absence of cross-links. This property of our
model can, in principle, reconcile the observable contro-
versy between the high- and low-temperature conductiv-
ities of the polymers. One can also note that the thermo-
dynamic characteristics of the network always correspond
to a metallic density of states at the Fermi level in both
the metallic and dielectric phases.

Let us start with specifying the model. Two appar-
ent spatial parameters can be introduced to characterize
the network: the concentration of the junctions per unit
length along the wire, p, and the concentration of the
wires per unit area, na. The ratio nz/p? plays the role
of the mean number of “neighbors” in the network. In-
deed, a segment of a wire of length 1/p is surrounded by
approximately no/p? other wires, one of which the wire
contacts over this length. We assume that

ny/p® > 1 (1)
and then, like in the theory of phase transitions, the mean
field approximation with respect to the interwire coupling
becomes exact. In other words, due to the inequality (1)
the statistical weight of the closed paths, consisting of a
few wires, is additionally reduced for the present network
in comparison with the corresponding regular lattice.

The wires of the network are well specified by the den-
sity of states at the Fermi level per unit of wire length,
7, and the Drude diffusion coefficient along the wire, Dy.
In terms of these parameters the localization length Ry
for the states of the wire is equal to [11,12]

Ry =2who Dy . (2)
The description in terms of © and Dy holds for the fibrils,

provided the interchain transfer integral ¢; within the
fibril is restricted to the region [12]

B/t Lt < Mh/T, (3)

where M is the number of chains in the fibril. Equation
(3) ensures that the chains are coupled strongly enough
and

where [ is the mean free path along the chain.

We describe junctions between the wires by pointlike
contacts with the amplitude of electron-transfer integral
J. The dimensionless parameter, characterizing the in-
tensity the interwire transitions at the contact, is the
Born cross section of “capture” by the contact

a=(rJi)? . (5)
We assume that the contacts are randomly distributed

over the wires with a low linear concentration p such
that the following inequality holds:

ly>1, l;y~max(1l/p,1/ap), (6)

where [ is the characteristic length of scattering by the
junctions. In this case the localization is mainly caused
by the intrawire scattering and a contribution of a dis-
order due to the random cross-links to the localization
is negligible. The principal effect of switching cross-links
is the extension of the localized wave functions over an
increasingly large number of the wires. Therefore the
delocalization transition is expected at some critical con-
centration p., which is for thick enough wires (Ro > 1)
in the region (6).

The above two types of disorder in the system should
be essentially distinguished. The first is the weak in-
trawire disorder due to intrinsic impurities, and the sec-
ond one is related to the random distribution of interwire
contacts over the network. As concerns the first one we
can independently average over the impurity potential
of the wires by using the supersymmetry method [11].
As a result we find that the dynamic correlations at a
frequency w in the given network are described by a su-
persymmetric o model. The free energy functional of the
Jj-th wire is (k= 1)

FlQ;] = %” / dz Str[Do(vQ;)? + 2 wAQ;],  (7)

where Str stands for the supertrace introduced in Ref.
[11], and Q is the supermatrix such as Q2 = 1 and Al =
—A?2 = 1. The notations for the elements in Eq. (7)
are the same as in Ref. [11]. The electron hops between
wires 7 and j are included in the total functional with the
Josephson-type terms

AF[Q:,Q)) = 3 Su(Qi() = Qi) (®)

where z; and x; are the cross-link coordinates along the
i-th and j-th wires. In terms of @Q-matrix elements the
density-density correlation function for the j-th wire of
the network considered reads

K;(@,0) = ~2(15)" [ Qsia0(0)@sas(2)
x exp(~FIQ) [] DQuv)
2 ©)
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where the functional integration over @ is implied. The
observable one-wire correlator can be obtained from Eq.
(9) after averaging K,(z,w) over all realizations of the
random network:
K(z,w) = (Kj(z,w))a - (10)

Although being somewhat technically complicated the
supersymmetry approach is the only reliable one to de-
scribe the MI transition in the model under considera-
tion. We outline the basic steps of the evaluation of Egs.
(7)-(10). The absence of the closed paths in the network
allows us to use the transfer-matrix method for evaluat-
ing the functional integral (9). Within this method the
expansion along the interwire couplings arises in a natu-
ral way, and then the averaging over the random junction
positions (the second type of disorder) can be straight-
forwardly carried out. As a result the problem is finally
reduced to the solution of integro-differential equations.
The equations are similar to those obtained for a model
on the Bethe lattice in Refs. [13-15], and therefore their
analysis can be done in the same way. Let us first present
the final results for the case of strong magnetic fields.

At low concentrations of the cross-links the dielectric
phase persists and the one-wire correlator (10) decays ex-
ponentially at large distances with the localization length
Ry, corresponding to uncoupled wires

K(z,w —0) = —1,-exp [— ] , Rioc =2Rp. (11)

—iw 2Rjoc
The doubling of the localization length in Eq. (11) is due
to the strong magnetic field.

If the concentration of links is large enough the di-
electric 1/w asymptotic (11) is no longer valid and the
conducting regime realizes. The critical concentration of
the MI transition, p = p.(a), is given by the equation

[dape(@)Riod ! = Ko(@) (8a = 8 ) yala) ,  (12)

where Ko(a) and I;/2(c) are the Bessel functions. The
MI boundary obtained from Eq. (12) is shown in Fig. 2.
We would like to draw attention to the weak depen-

dence p.(a) at not too small a. At o > 1, p.(e) ap-
proaches a constant

Pe = 1/4Roc - (13)
This result can be interpreted in the following way. The
strong interwire coupling leads to the appearance of
mixed states located on two interacting wires. The en-
ergy of these states is randomly spread around the Fermi
level within AE = wq, where

wo = 41)0/]2120(: . (14)
Being near the links these states are randomly distributed
also over the network. The typical overlap between them
equals 6E = wqexp[—2/(pRioc)], because of the expo-
nential localization of states within wire. According to
the arguments of Thouless [16], the MI transition occurs
at 6F = AE, i.e., at pc.Rjoc & 1, which is in agreement
with Eq. (13).
2934
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FIG. 2. Phase diagram of the random metallic network.

For weak coupling, o < 1, we obtain from Eq. (12)
pe = (1/4Rioe) 21/)/? 2 — C + In(2/)]"1,  (15)

where C = 0.577 is Euler’s constant. Equation (15) can
be approximately rewritten as p.Rioc = 1/+/a. The prod-
uct pRjoc ‘gives the number m > 1 of the states, with
which the given localized state interacts. On the other
hand the dimensionless parameter of the interwire cou-
pling can also be represented for the localized states as
a ~ (J/A)? <« 1, where J is the overlap integral and
A is the energy spacing between the localized states.
Thus, the critical concentration of the links p. corre-
sponds again to the case when the energy separation be-
tween the interacting states A/m becomes comparable
with their overlap J. This transition resembles for weak
coupling the MI transition on the Bethe lattice [13-15]
with the coordination number m > 1.

The behavior (11) is valid in the whole region of the
dielectric phase, including also the critical point. It is a
characteristic feature of the dielectric phase in the net-
work that the localization length along the wire is insen-
sitive to interwire coupling. On the metallic side near the
transition the correlator can be found to be

K(z,w — 0) = exp[—27/6 — z/2R1oc] (16)

where 62 = [p/p.(a) — 1] < 1 . The dynamics of spread-
ing the electron over the wires is more explicitly described
by the function P(w) = [dzK(z,w), for which one can
write the representation

P(w—0) = [—iw+W]!. (17)

Here W is the frequency of the interwire hopping and
correspondingly W1 is the lifetime of the electron within
the wire. From Egs. (16) and (17) one can see that W
decreases abruptly when approaching the critical point

W = Wy exp[—27/6] . (18)

In the deeply metallic region, p > p.(a), the correlator
(10) acquires a diffusive form

K(g,w) = [~iw + Dog® + Wo] !, (19)
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which remains valid as long as w or Wy is larger than
wo, Eq. (14). At a > 1, Wy is the inverse mean time
of the classical diffusion between the neighboring links,
Wo = p?Dy. The condition Wy > wp is analogous to
the requirement p > p. = 1/Rjoc. In the limit of weak
coupling, @ < 1, one can obtain the expression Wy =
7m&J%p, which holds at least at pRioc > 1/c.

Until now we considered the case of strong magnetic
fields. All calculations can also be repeated in the ab-
sence of magnetic fields [11,13]. The difference between
these two cases is finally reduced to the change of the lo-
calization length in (11)—(16) which in the limit of weak
and strong magnetic fields equals

Rioc(H =0) =Ry, Rioc(H =00)=2Ry. (20)

Using Eqs. (13), (15), and (20) one can see that the
magnetic field shifts the transition to a lower concentra-
tion of the cross-links. Due to a random orientation of
wires with respect to the field direction the region of the
crossover between these two limits is very broad,

H, = (he/eV'S) (1/Ro + 1/VS) (21)
where S < R3? is the cross section of the wire.

Although when deriving the phase diagram (Fig. 2)
we used the inequality (1) which enables us to neglect
closed paths, we believe that the phase diagram remains
qualitatively correct for the whole region of parameters.
For example, at weak coupling a < 1, this case often
being realized in real polymers, Eq. (15) for the critical
concentration can be represented in the form

jpc ~ W . (22)

In an application to more compact oriented polymers
such as Durham-Graz polyacetylene, where the concen-
tration of links p is expected to be high, the product Jp
plays the role of an effective bandwidth in the transverse
direction with respect to the axis of stretching. Equation
(22) shows that the transition occurs when this band-
width becomes comparable with the energy spacing wo
between localized states. This conclusion looks reason-
able and is in agreement with a quasi-1D consideration
in Ref. (8].

A MI transition in the intrafibril disorder produced by
aging is observed in the heavily doped polyacetylene and
polypyrrole [6]. In our model such a disorder is incor-
porated into Rj,.. Being inversely proportional to the
concentration of the internal defects, Rjo. decreases with
disorder, and at the critical disorder determined by Eq.
(12) the system becomes macroscopically dielectric. Note
that according to the phase diagram in Fig. 2 the con-
ducting state is more sensitive to the value pR),c. than
to the strength of the interwire coupling a and, there-
fore, can be more easily induced by an increase of pR)oc.
Experimentally this tendency is seen in the appreciable
enhancement of the low-temperature conductivity with-

out signs of saturation under application of the magnetic
field [3,4], pressure [17], and stretching [18,19]. The fact
that the conductivity is controlled by the cross-linkings
was most explicitly demonstrated in Ref. [10] for polyani-
line.

In summary, we suggested a new model for the de-
scription of electronic properties in fibril-form polymers
with a completely irregular structure. The MI transi-
tion studied within this model enables us to understand
peculiarities of transport in the novel highly conducting
polymers.
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