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Free Energy and Entropy of Diffusion by Ab Initio Molecular Dynamics: Alkali Ions in Silicon
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We have calculated the free energy of diffusion for lithium, sodium, and potassium ions in crystalline
silicon by combining a thermodynamical integration method with ab initio molecular dynamics simula-
tions. The entropy of diffusion is found to be negative, and its magnitude increases with increasing

atomic size of the diffusing species.
PACS numbers: 66.30.Jt, 31.20.—d, 61.72.Tt

In this paper we demonstrate the feasibility of combin-
ing a thermodynamic integration method with ab initio
total energy calculations in order to evaluate thermo-
dynamic properties. Our particular application of this
method is to the diffusion of alkali metal ions in silicon.
The diffusion of interstitial impurity atoms in semicon-
ductors is of considerable technological interest [1-8].
Hence it is important to be able to calculate diffusion
constants with sufficient accuracy to test the often contro-
versial experimental data [4-8]. A robust simulation
method is clearly needed for finite temperature studies of
such systems since the use of empirical bonding models is
not reliable in simulations of diffusion because the nature
of the bonding between the impurity atom and the host
material changes radically along the migration path. Ab
initio electronic structure calculations of the energy bar-
rier height AE to diffusion have been carried out in the
past using static total energy calculations [9-11]. How-
ever, such a calculation cannot give with the same ease a
value for the prefactor Dy in the Arrhenius formula for
the diffusion constant

D=Doexp(—AE/kBT). QD)

The prefactor Dy includes the change in the entropy of
the lattice vibrations AS which arises from the constric-
tion of the diffusing atom when it is at the top of the bar-
rier.

In this Letter we report the first application of thermo-
dynamical integration [12] combined with ab initio
methods to calculate the entropy of diffusion AS (the in-
tegration moves the diffusing atom from the bottom to
the top of the barrier). The advent of the first principles
molecular dynamics (FPMD) method [13-15] allows
such calculations to be carried out via a dynamical simu-
lation of the diffusion process with a full quantum
mechanical solution of the electronic structure of the sys-
tem at every time step of the dynamics. The electronic
structure problem can be solved either by means of an ad-
ditional fictitious dynamics of the electrons [13] or by
conjugate gradient energy minimization of the electronic
subsystem [14]. Such methods give the forces on all the
atoms throughout the dynamical simulation, incorporat-
ing a full and correct account of the bonding between all
the atoms [15]. Our study involves both static evalua-
tions of the energy barrier AE and molecular dynamics
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based calculations of the free energy of diffusion, AF
=AE —TAS. We have considered the diffusion of lithi-
um, sodium, and potassium ions in silicon since these
species are known to have the same diffusion path in the
silicon lattice, namely, along (111) directions in a zigzag
fashion [3,16]. We concentrate here on the diffusion of
positively charged ions, as experimental data are avail-
able for their diffusion constants. In fact, lithium is be-
lieved to be present in silicon always in a Li™ state, while
for sodium and potassium both positively charged and
neutral states are possible [3].

The preexponential factor can be calculated using the
transition-state theory expression [16,17]:

Do=_2!¢;<§gIZV*, v* =voexp(AS/kg) , @)

where a is the dimensionality of space, / is the elementary
jump length, g is the number of equivalent diffusion
paths, and v* is the attempt frequency. The value of vy,
the frequency of vibration of the diffusing atom along the
diffusion path, is evaluated with all other atoms fixed [2].
The dynamical correction factor £ accounts for correlated
(and reverse) diffusion jumps and is usually set to unity
[17], as it is in the present paper.

As already remarked, AS arises from the change in vi-
brational entropy of a real anharmonic solid when the im-
purity atom moves from its equilibrium position to the
saddle point. The physical meaning of AS becomes clear
from the expression written in the harmonic approxima-
tion [17]:

3N IN—1

AS =kgln |[TTvi® /vo TT v 1. 3)
i=1 i=1

Here vi? are the frequencies of the N-atom system (in-

cluding the diffusing atom) with the diffusing particle in
the vicinity of the energy minimum (the particle is not
fixed and is allowed to vibrate); v,-(s) are the frequencies
of the system with 3N —1 degrees of freedom where the
diffusing particle is at the saddle point and is not allowed
to vibrate along the diffusion path. The latter restriction
is necessary as the corresponding frequency would be
imaginary, so we have to constrain the system in the
saddle-point configuration.

It follows from Eq. (3) that the diffusion constant is in-
creased by the entropy contribution if frequencies at the
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saddle point are lower than in the equilibrium position.
This is the usual situation for vacancy-mediated diffusion,
because the diffusing particle feels a softer environment
when approaching the vacancy. For the interstitial mech-
anism the opposite relation between frequencies is expect-
ed since the saddle-point configuration is more constricted
than the equilibrium ionic arrangement and we expect AS
to be negative. Moreover we expect |AS| to be small for
smaller diffusing species (Li* and Na™ in our case) and
larger for the bigger interstitial K*. The formulation
given in (3) is not very satisfactory for the evaluation of
AS, because it would involve an evaluation of all the vi-
brational frequencies of the system with the diffusing
atom at the top and the bottom of the barrier. Even then
it would represent only an estimate within the harmonic
approximation.

Another approach is to evaluate the diffusion constant
dynamically from an analysis of the mean squared dis-
placement of the impurity during a molecular dynamics
simulation [18,19]. This method allows a determination
of the preexponential factor, but it is practical only at
temperatures close to the melting point since at lower
temperatures diffusion events are too rare to be observed
in the molecular dynamics run.

Thermodynamical integration [12] is a practical alter-
native method for evaluating AS. The procedure is to
perform molecular dynamics simulations with fixed val-
ues of the diffusion coordinate u and evaluate the free en-
ergy barrier AF as

1

aF = [ (QE /) rdu o
Here u =0 corresponds to the minimum energy state and
u=1 represents the saddle-point structure. AF is the
work required to push the diffusing atom from the bottom
to the top of the barrier at constant temperature. The re-
quirement of u =const means that the molecular dynam-
ics run is performed with a constraint, which allows us to
evaluate the force tending to push the system down hill.
The integral of the statistical average of this force, Eq.
(4), gives the amount of work done on the system, which
is equal to change in the free energy. For a single inter-

stitial impurity in an infinite crystal dE/du is simply the
force on the diffusing atom from the rest of the system,
suitably scaled because u has been scaled to lie between
zero and unity. In a more general situation such as a va-
cancy (or interstitial in a finite cell with periodic bound-
ary conditions as in the present study) when the diffusion
coordinate is a linear combination of the ionic coordi-
nates, the derivative dE/du in Eq. (4) can be expressed as
a corresponding linear combination of forces. As usual in
dynamical simulations the ensemble average in Eq. (4) is
taken as a temporal average over the canonical trajectory.
The importance of Eq. (4) follows from the fact that it
allows AF to be calculated as the ensemble average of the
derivative of the total energy. In contrast, the free energy
itself cannot be obtained by thermal averaging.

We turn now to the details of the calculation. For the
electronic structure calculations we used the pseudopo-
tential total energy method [14], employing density-
functional theory in the local-density approximation
(LDA), Perdew and Zunger’s parametrization [20] of the
exchange-correlation energy, norm-conserving pseudopo-
tentials of Kerker type [21] in the Kleinman-Bylander
form [22], supercells and special points integration over
the Brillouin zone, and a plane-wave basis set. We used
cubic supercells containing 64 Si atoms and one impurity.
The cut-off energy for the plane-wave expansion of the
wave functions was 10 Ry. A single k point (I') was used
for the Brillouin zone sampling. The effective force
9E/du in Eq. (4) was derived from the Hellmann-
Feynman forces calculated from the electronic structure
of the system [14]. For the dynamics the canonical en-
semble was simulated using a Nosé thermostat [23]. The
ionic equations of motion were integrated using a fifth-
order predictor-corrector algorithm with a time step of
from 0.2 to 0.5 fs, the total length of the dynamical run
being up to 0.4 ps. The conjugate-gradient minimization
of the electronic degrees of freedom was repeated after
each ionic displacement, and the drift of the constant of
motion was maintained to be less than 10 ™% eV/ionps,
which is comparable with the results reported in [15]. At
a typical temperature of 1000 K the correction TAS to
the energy barrier AE is about 0.05 eV for sodium. The
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FIG. 1. The shape of the energy barrier for diffusion of Li* (a), Na* (b), and K™* (c) in silicon (dotted lines). Solid lines repre-
sent the static effective restoring force, and dashed lines correspond to the dynamic average of this force at 1000 K. The scale for
forces is given on the left axis, that for AE on the right.
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error in the values of AS comes from averaging over only
a few temperatures when using the relationship AS
=(AE —AF)/T, and from the inaccuracy of the numeri-
cal integration of Eq. (4). The ensemble averaging of the
effective force introduces a statistical error of approxi-
mately 5%. The total error in AF is estimated to be of or-
der of 0.01 eV, which gives an accuracy in AS of 0.1kp.

We first calculated statically (i.e., at T=0) the
diffusion pathway and the energy barrier AE for Lit,
K*, and Na% impurities. In each case the energy
minimum was found to occur when the impurity was at
the tetrahedral site, and not at the hexagonal site as pre-
dicted by Weiser using an empirical bonding description
[16]. The hexagonal site is the saddle point for diffusion.
The shape of the barrier is shown in Fig. | both in terms
of the energy and the static force fo=(dE/dul, r=0
along the diffusion trajectory. The accuracy of the nu-
merical integration can be checked by comparing the
area of the shaded region (Fig. 1), which is the integral
(4) at T=0, with the total height AE of the barrier. The
agreement was found to be better than 5%. Dynamic
runs were then performed at a few values of u at different
temperatures (from 500 to 1500 K) in the manner de-
scribed above. The values of f(u) =(dE/du), 1 are also
shown in Fig. 1 for 7=1000 K. The thermal contribu-
tion — TAS to the potential energy barrier is represented
by the area between the solid and dashed lines in Fig. 1.
Our computed results are reported and compared with
experiment in Table I and Fig. 2.

Li*t is clearly the fastest diffusing species among the
elements studied. It has the highest attempt frequency,
and the lowest energy barrier for diffusion, which is not
decreased by the entropy contribution. The best experi-
mental values quoted for Lit in Ref. [3] are AE =0.66
+0.01 eV and Dy=(2.5%0.2)x10 "3 cm?s !, although
it should be noted that different experimental methods
produce quite scattered data [see Table I and Fig. 2(a)].
All in all we regard our results for Li* to be in good
agreement with the experimental data, and almost cer-
tainly more accurate than some.

TABLE I. Results for the interstitial diffusion of positive al-
kali ions in silicon.

Vo AE AS Do
(THz2) (V) (kg) (107 3cm?3s™1)
Li*
Theory (1000 K) 10.11 0.58 0.0 3.72
Experiment 0.57-0.79* 1.9-9.4¢
Nat
Theory (500 K) 8.64 0.95 —0.42 2.08
Theory (1000 K)  8.64 0.95 —0.50 1.92
Theory (1500 K)  8.64 0.95 —0.57 1.79
Experiment 0.72° 1.65°
1.27¢ 14.7¢
K+
Theory (1000 K)  9.36 0.89 -1.8 0.59
Experiment 0.76° 1.1°
0.80¢ 1.1x1073¢

“Reference [5].
dReference [6].

aReference [3].
bReference [4].

For Na%t we find a small negative AS and for K* a
larger negative value, in accordance with the expected
trend. The results for AS also follow the size of the static
distortion produced in the silicon framework by an im-
purity ion held at the tetrahedral site, which leads to an
increase in the nearest neighbor Si-Si bond length by
0.8% for Li*, 2.2% for Na*, and 4.5% for K*. The cal-
culated values of AE and Dy are also in reasonable agree-
ment with the measurements of Svob [4] who produced
the Na and K dopants in an electrically active state using
a p-n junction technique and probably observed intersti-
tial diffusion, although the value of D might have been
overestimated due to trace lithium contamination (see
[31). The only other observation of Na™ in silicon is due
to Doubrava [8] who used the same experimental tech-
nique.

Our results for Na® and K% differ substantially from
the other reported experimental values [5-7]. In this
connection the following quick estimates are useful. The
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FIG. 2. Theoretical (dashed line) and experimental temperature dependence of the diffusion coefficient for Li* (a), Na* (b), and
K™* (c) ions in Si: (a) experiment from Ref. [3] (solid lines); (b) experiment from Ref. [4] (solid line), Ref. [5] (dotted line), and
Ref. [7] (circles); (c) experiment from Ref. [4] (solid line) and Ref. [6] (dotted line).
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frequency of vibration in the minimum energy config-
uration vp is nearly the same for all three species and is of
the order of 10 THz (see Table 1), which gives Do=4
x 1073 cm?s 7! where we have used g=4 and AS=0 in
Eq. (2). Thus our results are consistent with the con-
clusion of Hu [1] in that interstitial diffusion in Si should
be characterized by Do= 1073 cm?s ! and AE <1 eV.
The experimental results of Refs. [5-7] fall considerably
outside this range. We suggest therefore that the dif-
fusion constants of sodium and potassium measured in
these ion implantation experiments do not correspond to
diffusion of positive ions by the interstitial mechanism.
The sodium and potassium ions probably prefer to be-
come neutral atoms and become bonded to radiation de-
fects, vacancies, or oxygen impurities. The formation of
an impurity-vacancy complex is more likely for potassi-
um, while sodium might become a substitutional impurity
as its atomic size is comparable to that of silicon. Note
that none of the experimental results for Li [see Fig.
2(a)] was obtained by ion implantation.

In conclusion, we have shown that it is now possible to
calculate energy barriers and entropies of diffusion by
combining thermodynamical integration [12] with recent-
ly developed electronic structure techniques [13,14]. The
diffusion of positive alkali ions in silicon is shown to be
characterized by a negative migration entropy, and the
magnitude of AS increases rapidly with increasing atomic
size of the impurity. Our calculations represent a major
advance because it is difficult to measure diffusion
barriers and entropies accurately, particularly if more
than one diffusing species or different charge states are
present, and previous theoretical calculations have been
flawed by inadequate knowledge of the interatomic bond-
ing forces.
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