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Equilibrium Shapes of Smectic-A Phase Grown from Isotropic Phase
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Equilibrium shapes of a smectic-2 phase grown from an isotropic phase have been investigated. An
integral equation which describes the equilibrium shapes is derived by taking account of the difference in

Gibbs free energy between the smectic-8 and the isotropic phase, a curvature elastic energy of the
smectic-8 phase, and an interface energy. It is shown that a popular family of solutions of the equation
are given by some Weingarten surfaces. The equilibrium cylinder structures with and without beaded
configurations observed in the growth of a smectic-8 phase can be well explained in terms of such sur-
faces.

PACS numbers: 61.30.Cz, 46.30.—i, 82.6S.—i

A number of mesomorphic compounds exhibit the
phase-transition sequence isotropic (I)-nematic (1V)-
smectic A (S~) as the sample is cooled, while some others
go over directly to S~ from the I phase. Normally, the
shapes of the S~ phase surrounded by the N or the I
phase are batonnets, which are elongated structures con-
sisting of focal conic domains [I]. However, the S~
phase grown directly from the I phase can also form long
cylindrical structures and some of these structures devel-
op a beaded configuration. Investigators, captivated by
the symmetry of the shapes, have made efforts to under-
stand the formation mechanisms of such shapes [2-5].

The equilibrium shapes of a S~ phase grown from an I
phase are undoubtedly determined by the competition be-
tween the bulk and the interfacial energies. For the bulk
energy, the S~ phase has a lower Gibbs free energy than
the I phase, but possesses an extra curvature elastic ener-
gy. The determination of the S~ nucleus shape is, there-
fore, a puzzling theoretical problem. Recently Pratibha
and Madhusudana have experimentally investigated the
structures of the S~ phase grown from the I phase in

binary mixtures of smectogenic and nonmesomorphic ali-
phatic compounds such as mixtures of octyloxycyanobi-
phenyl (8OCB) and dodecyl alcohol (DODA), and have
given a theoretical explanation for such structures [5].
However, their treatment of the problem is still insuf-
ficient, because the curvature mechanism of the interface
between the S~ and I phases has not been determined
yet. In Ref. [5] the cylinder formation was explained by
a spontaneous curvature due to the concentration gra-
dients of the mixture of smectogenic and nonmesomorph-
ic compounds, but the same structures have been found in
some single-component systems [4]. Thus, the general
questions which arise are as follows: What is the shape of
the S~ nucleus in the isotropic phase, and how can we de-
scribe it?

In this Letter we try to provide clear answers to these
questions. We analytically obtain the general equilib-
rium-shape equation of the S~ phase grown from the I

BV=)~(d —d H+ 3 d K)dA, (2)

respectively, where H and K are the mean curvature and
the Gaussian curvature of the outer surface of the equi-
librium Sz nucleus, respectively, and e is equal to +1 or
—

1 according to whether 1
—2dH+d K is positive or

negative [6]. The value of e is + I, because the layer
thickness d is much smaller than the size of the nucleus
and thereby l

—2dH+d K is positive. The bulk energy
variation is given by BFt = —goBV, where go is the
difference in the Gibbs free energy densities between the
I and S~ phases. Since the isotropic phase is metastable,
while the Sz phase is stable, the free energy density
difference go is positive. The extra interfacial energy is

6F~ =@de, where y is the S~-I interfacial tension. In
addition to these energies, the extra growth costs a curva-
ture elastic energy [8,9]

~Fc = (k ) td j2) )~ (2H) dA + ksdIIt K dA, (3)

where k]] is the splay elastic constant of the S~, and k~ is
defined as 2k]3 —k22 —k24, which are the Oseen-Frank
elastic constants. Then, the net energy of the growth has
the form

phase [6] and find that the shapes can be described by
one of the Weingarten surfaces, which are extensively
studied problems in differential geometry [7]. Some ex-
act solutions of the equation are found and are in excel-
lent agreement with the experimental findings [1-4],
especially the recent observation in Ref. [5].

First, let us consider the outward growth by adding a
S~ layer of thickness d on the top of the outermost equi-
librium S~ nucleus. The corresponding net increase in

the interfacial area and volume for the 5~ domain can be
exactly expressed as

&l =II~ ( —2dH+d K)edA

and
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F =~Fc+~F~+~Fv where k =2k |~+kg. Substituting the above solution into
the integral in Eq. (6), we obtain

=(~t( gp/—3)Kd'+(g. H+ yK)d'
II~ [goH+ yK]dA =4Ã(y —gor )

= —4x(y +gpk)'i &0,
+(2k~~H +ksK gp 2yH)dldA.

This expression can be seen as a third-order function of d.
I f we restrict ourselves to the study of the shapes having
spherical topology, the coeIIicient of d in Eq. (4) is cer-
tainly negative because gp & 0 and fKdA =4' according
to the Gauss-Bonnet theorem. By the definition of the
equilibrium shape, the absolute minimum of F must be
located at d=0, requiring that the coe%cients of d and
d in Eq. (4) are positive and zero, respectively. From
these requirements we have the general equilibrium-shape
equation for the outermost layer of the Sz domain,

IIt [2k ) )H + ksK —
gp

—2yH]dA =0, (5)

and the stability condition

IIt [gpH+ yK]dA & 0.

which states that Eq. (6) is not satisfied; in other words, a
sphere is not stable. This theoretical prediction is sup-
ported by the observation at high concentration of DODA
in the mixtures of 8 OCB and DODA [5]: At a sample
cooling rate of O. I C/min, the S~ appears initially in the
form of a number of spherical droplets which grow in

size. This instability is consistent with the above results.
After the droplets attain a radius of 3-4 pm, they start
elongating and finally form cylinders with a constant ra-
dius of —3 pm.

The experimental evidence that a cylinder is a stable
shape is also predicted by the present theory. The
Weingarten equation, Eq. (7), with H= —(2pp) ' and
@=0, gives the expression for the radius of the cylinder
Po,

krp=
(y'+g pk) ~" y'- (8)

FIG. I. Illustration of the net energy function F(d) which
has the form of Ad +Bd with 3 (0 and 8 )0.

We illustrate the behavior of F as a function of d in Fig.
1. It is clearly seen that Eqs. (5) and (6) form the energy
barriers which prevent the S~ nucleus at d =0 from
growing and dissolving.

It is now obvious that the equation of surface

2k ) ) H + k5K —
gp

—2yH =0

can always satisfy Eq. (5). A surface described by Eq.
(7) is just one of the so-called Weingarten surfaces, on
which there exists a functional relation between H and K
[7]. For the examination of the shapes found in the ex-
periments, we consider two kinds of obvious solutions of
Eq. (7): One is a sphere and the other is a cylinder. Al-
though both surfaces satisfy Eq. (7), the behavior in sta-
bility is completely different. For a sphere of radius rp,
we have H = —rp and K =rp and the unique solution
calculated from Eq. (7) is

Po=
(y'+2k „g,) '"—

y
(10)

If we assume that the inhuence of the caps at both ends is

negligible (i.e. , L))pp, with L the length of the cylinder)
and L &4y/gp, then the stability condition, Eq. (6), is

satisfied,

IIt(gpH+ yK)dA =x(4y gpL) & 0. —

Substituting the experimentally obtained values of pp =3
pm [5], k~~ =10 dyn [I], and y=10 dyn/cm [10]
into Eq. (10), we have gp =40 ergs/cm . Using these
values and Eq. (I I), we find L & 10 pm. These short and
stable cylinders are just the feature of batonnets found in

the early stage of the study of liquid crystals [I] as well

as in the recent observation at low DODA concentration
(Fig. 2 of Ref. [5]). On the other hand, if L & 4y/gp, the
integral of Eq. (11) is negative. The cylindrical struc-
tures are, thereby, unstable and will rapidly elongate as
found in the experiment; the cylinders with high DODA
concentration rapidly grow to lengths =500 pm or more
at a temperature which is 2-3 C below that at which

they form [5].
It is evident from Eqs. (8) and (10) that the radius of

the sphere and the cylinder is determined by the differ-
ence in the Gibbs free energy densities between the I and

Sz phases, the S& curvature elastic energy, and the Sz-I
interfacial tension. In other words, the spontaneous cur-
vature is controlled by these quantities.

Second, we analyze the inward growth by adding a Sz
layer onto the inner surface of the equilibrium nucleus of
S~. Here, we assume that the inside of the innermost S~
layer of the cylinders is filled with the I phase, and is

called the core region hereafter, and that the equilibrium
shape discussed below is defined at the inner surface. A
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calculation similar to that mentioned above [6] has shown
that we can obtain the equilibrium-shape equation and
the stability condition for the inner growth by simply re-
placing H with —H. Indeed, Eqs. (6) and (7) are
transformed into

and

IIt( —giiH+ yK)dA & 0 (i 2)

2k~]H +k5K gp+2yH =0,
respectively. For the case of the spherical inner surface,
the inner radius and the stability condition are

and

k
rp =

(y'+g. k) '"+ y
(i4)

II~( —goH+ yK)dA =4'(y+goro) & 0, (is)
respectively. For the case of the cylindrical inner surface,
the inner radius and the stability condition are

and

(y'+ 2k iig ) ' '+ y
(16)

goH+ yK)d& =+(4y+goL )—& 0, (i 7)

respectively. It is evident that the inequalities, Eqs. (15)
and (17), are always valid. Note from these results that
unlike the outer-growth problem the spherical and cylin-
drical inner interfacial surfaces of the S~ domain are al-
ways stable. The above results also predict that a nucleus
of a sphere or a cylinder whose radius is smaller than rp
or pp, respectively, dissolves in the isotropic phase. It is
observed that all the long cylinders at equilibrium have
the core region [5]. Using the same values of y and go as
mentioned above we obtain from Eq. (16) the inner
raidus pp=0. 43 pm, which is in excellent agreement with
the experimental observation [5].

We mention here the shape transformation of cylinders
filled with the S~ phase, i.e., without the core region. If
the cylinders are unstable when they are bent these
cylinders may grow and then form focal conic defects,
which are the most common structures in the S~ phase.
We speculate that this is a possible origin of the forma-
tion process of the defects. The detailed analysis of the
formation process is, however, beyond the scope of the
present Letter and will be published elsewhere.

Finally, we explain the undulated cylinder structures,
which consist of successive beads, in terms of the present
theory, i.e. , Weingarten surfaces satisfying Eq. (7).
These structures have been observed in the experiment on
the growth of the S~ nucleus (see, for example, Fig. 8 in
Ref. [5]). For simplicity, we neglect the ks term in Eq.
(7). In this case, Eq. (7) can be modified to

y+(y'+~k g )' '
y

—(y'+2k g )' 'H- H—
2k]i 2k])

=0. (18)

Equation (18) indicates that the solution of the surface
can be constructed by linking two kinds of hypersurfaces
with constant mean curvature. In 1841, Delaunay [11]
developed the following beautiful way of constructing a
rotationally symmetric hypersurface with constant mean
curvature: By rolling a given conic section on a straight
line in a plane, and then rotating the trace of a focus
about that line, one obtains a surface. As indicated in
Fig. 2, the conic section is assumed to be an ellipse with
the lengths of semiaxes a and b, where a & b and

where k =(a —b )'~ /a. The threshold radii for the un-
dulation are p~„.„=p~I„=a, which lead to k =0. In this
case, the threshold pitch is given by

p =2ira =2m(p .„„+p;„)/2. (2i)
This pitch is different from that obtained by Pratibha and
Madhusudana; their expression is

p =2&(pmaxpmin) ]/2 (22)

It is obvious from the properties of the elliptic integral
[1.35 ~ E(k ) ~ zr/2] that Eq. (21) is always a good ap-
proximation for Eq. (20), whereas Eq. (22) does not al-
ways give a reasonable result. For example, when p;„

0, Eq. (21) gives a definite pitch which is exactly

Pmin Pmax

FIG. 2. Illustration of constructing a rotationally symmetric
and periodic surface ~ith constant mean curvature by
Delaunay's method. f is the focus of an ellipse. p „.and p;,
are the maximum and minimum radii of the surface.

a=
(y'+2k „g,) '"—

y

We obtain a periodically and rotationally symmetric sur-
face with H = [y —(y +2k i igo) ' ]/2k i i, which satisfies
Eq. (18), by Delaunay's method. The maximum and
minimum radii of the surface are p,. „=a+ (a —b ) '

and p~;„=a —(a —b ) ', respectively, where the pa-
rameter b can be determined from the stability condition
[Eq. (6)l. The detailed calculation for this is based upon
the analysis of elliptic integrals, but we do not show the
results here [6]. The pitch of the undulation p, which
corresponds to the perimeter of the rolling ellipse, is also
calculated from the elliptic integrals,

p ~/2

p =4a (1 —k sin 0) '~ d0=4aE(k ),
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equal to half of the perimeter of the sphere with the ra-
dius p,„. A beaded structure which appears as a string
of spheres is often found in lyotropic liquid crystals [12].
On the other hand, Eq. (22) gives p =0; the undulated
structure is a string of coins, which has never been ob-
served in experiments.

A sphere of radius 2a is the solution of H = [@—(y
+2k ||go) ' ]l2ki| as well, and is 2 times as large as the
average radius of the cylinder with the undulated
configuration [(p,. „+p;„)/2 =a]. We expect the ex-
istence of the structures which consist of the sphere and
the undulated cylinder. I ndeed, such structures have
been found in the experiment and the observed radius of
the sphere is just 2 times as large as the average radius of
the undulated cylinder [see Fig. 8(b) in Ref. [5]]. We
feel that these observations are strong evidence for the
validity of the present theory. The structure generated by
the other solution of Eq. (18) is not acceptable as a nu-

cleus of the S~ phase, because the locus of the focus of
the solution forms the nodary [11],and thereby inscribed
hollow rings to the surface of the structure are formed
periodically.

In summary, we have derived an equation, not found
before, to describe the equilibrium shape of the growth of
the Sz layer from the I phase. We show that a popular
family of shape solutions is described by the Weingarten
surfaces. The cylindrical structures with and without un-
dulated configurations found in the experiment can be
completely explained by the present theory. This indi-
cates that these shapes are determined by the competition
among the I-5& interface energy, the diA'erence in I and

S~ Gibbs free energies, and the S~ curvature elastic en-

ergy, and hence the spontaneous curvature of the S~ lay-
ers is governed by these quantities. To our knowledge a

surface equation which has an integral form has never
been presented in either mathematics or physics before
our present theory. The surface-integral equation [Eq.
(5)] derived for the study of the Sq-nucleus shape has,
therefore, general significance.

The authors would like to thank The Institute of
Theoretical Physics, Academia Sinica, and The Universi-
ty of Osaka Prefecture for their support of this joint re-
search.

[I] P. G. de Gennes, The Physics of Liquid Crystals (Claren-
don, Oxford, 1975).

[2] R. B. Meyer, F. Jones, and P. Palffy-Muhoray, in

Proceedings of the Thirteenth International Liquid Crys-
tal Conference, Canada, July 1990 (unpublished).

[3] A. Adamczyk, Mol. Cryst. Liq. Cryst. 170, 53 (1989).
[4] S. L. Arora, P. Palffy-Muhoray, and R. A. Vora, Liq.

Cryst. 5, 133 (1989).
[5] R. Pratibha and N. V. Madhusudana, J. Phys. II France

2, 383 (1992).
[6] The details will be described in a future publication by

the current authors.
[7] C. E. Weatherburn, Differential Geometry of Three Di

mensions (Cambridge Univ. Press, Cambridge, 1955).
[8] W. Helfrich, Z. Naturforsch. 28C, 693 (1973).
[9] Ou-Yang Zhong-can, S. Liu, and Xie Yu-zhang, Mol.

Cryst. Liq. Cryst. 204, 143 (1991).
[10] Since we are not aware of any measurements of the Sz-I

interfacial tension y, we take y as that at the S~-Ã inter-
face measured by S. Faetti and V. Palleschi, J. Chem.
Phys. 8 I, 6254 ( I 984) .

[I I] C. Delaunay, J. Math. Pures et Appl. Ser. I (6), 309
(1841); J. Eells, Math. Intelligen. 9, 53 (1987).

[12] A. Saupe, J. Colloid Interface Sci. 58, 549 (1977).

2915


