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A multimode nonlinear particle simulation code is used to find the saturated efficiency for power
transfer into modes of a cylindrical waveguide carrying a spatiotemporally modulated gyrating electron
beam. For a TEs;-mode fifth harmonic 94-GHz harmonic converter using a 150-kV, 6.7-A cold beam,
this code predicts a conversion efficiency of 57% when a linearly tapered guide magnetic field is used,
and 70% when a nonlinear taper is used. Efficiency in the linear taper case is shown to be insensitive to
beam axial velocity spread, while both cases show negligible power flow into competing modes.

PACS numbers: 41.60.Ap, 52.75.Ms

Efficient, high-power rf sources are in demand for
many applications, such as drivers for next generation
electron-positron colliders, as sources for fusion plasma
heating and control, and as amplifiers for advanced mm-
wave radar systems. Extensions of proven technologies
are being undertaken to meet these demands. Thus ad-
vanced klystrons [1] and gyroklystrons [2] show promise
as 50-MW sources above 10 GHz for driving next gen-
eration colliders, cavity gyrotrons [3] have generated 940
kW at 140 GHz for plasma heating, and 35-GHz gyro-
tron traveling-wave amplifiers have shown 32% band-
width and 30% efficiency at output levels of 25 kW [4].
This Letter reports first results on the nonlinear theoreti-
cal properties of a recently proposed [5] alternative mech-
anism to satisfy these demands, namely, gyroharmonic
radiation from a spatiotemporally modulated gyrating
electron beam. Prior to the work reported here, it was
speculated that harmonic conversion based on this process
could be highly efficient, that radiation into competing
modes could be small, and that a moderate axial velocity
spread on the electron beam could be tolerated [5,6]. Re-
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where r and ¢ are the radial and azimuthal coordinates,
and u and w are components of a beam electron’s mo-
mentum (divided by the electron rest mass m) along and
across the z axis. The relativistic Lorentz factor is relat-
ed to the momenta by y2=(u?+w2+c?)/c?, and a uni-
form axial static magnetic field é€,Bg is imposed. Unit
vectors €g and €, are along the gyrating particles’ angular
and axial momenta. The distribution function for the
beam electrons is fo(u,w,e,r,4), where ¢ is the azimuth
angle in momentum space. The delta function in the in-
tegrand of Eq. (1) gives the equilibrium current density
its spatiotemporal character: An individual particle
moves on a helix of axial pitch number &, and the helix
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sults are given here that confirm these speculations.

The harmonic conversion process as described here is
fundamentally different from that operating in gyroreso-
nance devices such as the gyrotron. The latter depends
upon phase bunching induced near gyroresonance by the
rf fields, a process that is second order in the amplitude
of the fields. Harmonic conversion operates without in-
duced phase bunching, since a spatiotemporally modulat-
ed beam can transfer energy efficiently to radiation fields
without additional modulation; this process is first order
in the amplitude of the fields. This distinction was point-
ed out in treatments of the linear aspects of the process
[5,6], but the crucial issues of mode competition and
maximum harmonic conversion efficiency could not be
addressed prior to development of the theory outlined
here.

Linear theory for the harmonic conversion process was
published initially for rectangular waveguides [5,6]. The
waveguides were taken to contain a spatiotemporally
modulated gyrating beam in a static axial magnetic field
having a current density that could be characterized as

1)

[

rotates with an angular frequency p. This equilibrium is
taken to model the beam produced by a cyclotron au-
toresonance accelerator [7] that is driven at angular fre-
quency p. It was shown [5] that E=y(p — Q)/u, where
Q =eB/my is the gyrofrequency.

In general, the linear theory showed that a beam de-
scribed by Eq. (1) will couple to many rectangular
waveguide modes at a frequency w =sp, where s is the
harmonic number. However, maximum power growth
will occur only for a mode whose group velocity c2k./w
equals the mean axial beam velocity U/y, where k; is the
axial wave number. Below, we refer to this as the match-
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ing condition. For a cold beam the power flow into the
TE,,» mode when matching is observed has been shown to

be [6]
2
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when no signal is present at z=0. In Eq. (2), Qm, is a
dimensionless geometric coupling factor that reflects
symmetry-based selection rules at each harmonic;
Z1te=120n(w/k,c) Q; A is the waveguide cross-sectional
area; W and U are the transverse and axial normalized
electron momenta; o is the dc beam current; and
K =JJ(kmnp), the derivative with respect to its argument
of the sth-order Bessel function; k2, =(w/c)?>—k2; and
p=W/Qy is the gyration radius. Equation (2) predicts
that the power flow will grow quadratically with both the
interaction length and beam current. Such growth will
cease when matching fails due to depletion of electron en-
ergy, once moderate wave growth occurs. It was argued
[5,6] that cumulative power growth could be maintained
throughout the nonlinear regime if the axial magnetic
field (or the waveguide dimension) was tapered, so as to
preserve matching. In this way, it was claimed, all trans-
verse energy initially on the beam could be transferred to
the wave. This speculation did not take into account any
details of the nonlinear dynamics between the particles
and the large amplitude fields in a superposition of al-
lowed modes, nor indeed any variations in transverse par-
ticle momentum brought about from the axial gradient of
a tapered B field. It was based simply upon the assertion,
for a cold beam, that all particles would have the same
history, and thus could be “milked” of all their transverse
energy when matching was present all along their path.
Recent extension [8] of the linear theory to cylindrical
waveguides has shown that the harmonic power flow fol-
lows Eq. (2), with Q' =J2(xpn) (1 —m?/x,2,), where
Xmn is the nth zero of J,,,(x). For cylindrical waveguides,
the following additional features were shown to arise if
the distribution of electron guiding centers in the beam is
axisymmetric: (i) Power growth at a harmonic frequency
o =sp is absent, except for modes having an azimuthal
mode index m =s. (ii) A beam with a uniform distribu-
tion of guiding centers will have an initial power growth
rate no less than 90% that of a beam with no guiding
center spread if the ratio of the outer guiding center ra-
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dius to the waveguide radius is less than 0.8944/x,,,;. (ii)
Diminution in initial sth harmonic power growth due to
axial velocity spread will be less than 10% the growth
rate of a cold beam if the relative spread is less than
48/N%, where N is the number of interaction guide wave-
lengths. (iv) Power transfer from a cold beam to TM
modes is absent when matching prevails, as a result of ex-
act cancellation between contributions from the axial and
transverse field components. Items (i) and (iv) are a
direct result of the higher symmetry of cylindrical
waveguide, as compared to rectangular. These points
guided the formulation of a theory and attendant particle
simulation code to model the nonlinear behavior of this
interaction.

A slow-time-scale formulation in three dimensions
developed originally for modeling the steady-state opera-
tion of gyroamplifiers [9] has been extended to include
the coupling between allowed modes. In this formulation,
the electromagnetic field is expanded as a superposition
of unperturbed TE and TM modes of a cylindrical
waveguide. By averaging Maxwell’s equations over a
fundamental wave period, a series of slow-time-scale
equations is derived for the spatial evolution of the ampli-
tude and phase of each waveguide mode as driven by the
electron beam in the assigned axial guide magnetic field.
In general, the guide magnetic field is axisymmetric but
nonuniform. The axial magnetic field profile may either
be prescribed by a requirement for maintaining matching
as electron energies deplete or it may be externally
specified. Coupling of waveguide modes occurs through
mutual nonlinear interactions with the ensemble of beam
particles. This slow-time-scale averaging allows mul-
timode coupling to be treated in this problem because the
frequencies of the competing modes are all integral multi-
ples of the fundamental pump frequency p, and because
the time average is taken over the period of this funda-
mental frequency. (This then corresponds to averaging
over m periods for the mth harmonic.) The slow-time-
scale field equations are integrated simultaneously with
the three-dimensional Lorentz force equations, but no
such averaging is performed for the orbit equations.

The governing equations for the slowly varying ampli-
tude A,,,(z) and axial wave number k,(z) for TE,.,
modes were previously derived [9]. For an axisymmetric
distribution of guiding centers, these quantities are given

| by
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where the detuning parameter is ®,, =mpt — [§dz'k,(z') — m8, with 6 the electron gyration phase, re the guiding center
coordinate, k., the cutoff wave number, and C,,, a geometrical factor. The angular brackets denote an ensemble aver-
age over the initial distribution function of the electrons. For TM,,, modes the following equations are obtained:
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The particle orbit equations [9] complete the formula- |
tion. These equations are not restated here to conserve
space. The coupled set of equations are integrated in z
and the Poynting flux at each location z is found. The in-
put boundary conditions at z =0 for the particles are
chosen to model an axisymmetric monoenergetic beam
entering the interaction waveguide with a spatiotemporal-
ly modulated gyration angle 6 =6y — £z + pt, as indicated
in Eq. (1). Axial momentum spread is introduced
through a Gaussian pitch-angle distribution. The bound-
ary conditions at z =0 on the radiation field are dA,,,/dz
=0 and k,(0)2=m?p%c®—k2,; Amn(0) is taken to be
at the noise level.

For a cold beam satisfaction of the matching condition
corresponds to vanishing of the factor in square brackets
on the right-hand side of Eq. (4). As a result, coupling is
absent between a cold beam and all TM modes, as was
stated above on the basis of linear theory. A numerical
evaluation of Eq. (4) under conditions where matching is
not strictly observed did not yield significant power flow
into TM modes. It can then be concluded that only TE
modes need to be considered in this problem.

To illustrate, numerical results of evaluating Eq. (3)
and the coupled orbit equations are shown in Figs. 1-3
for fifth harmonic operation at 94 GHz, where the TEs,
mode interacts with a 150-kV, 6.667-A beam. A beam
velocity ratio a=W/U =2.0 is selected. The pump fre-
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FIG. 1. Efficiency vs interaction distance for fifth harmonic
conversion using a cold beam in a linearly tapered B field.
B=By=7.983 kG for z<R, and B(z)=Bgl1 —0.002(z
— R)/R] for z > R, with the waveguide radius R =0.34 cm.

quency p/2n=18.8 GHz. For these parameters, match-
ing sets the waveguide radius R =0.34 cm, the cutoff fre-
quency cks1/2r=90.1 GHz, and the initial axial magnet-
ic field Bo(0) =B, =7.983 kG. Linear theory indicates
that the most dangerous competing modes in this case are
TE4 and TEg, at the fourth and sixth harmonics, respec-
tively. For a uniform magnetic field B(z) =B,,, the fifth
harmonic saturated efficiency was found to not exceed
10%. Tapering the magnetic field allows the saturated
efficiency to greatly exceed this value, as is shown in the
figures. Efficiency is plotted in Fig. 1 for a cold beam in a
linearly tapered B field when the TEy,, TEs;, and TEg,
modes are simultaneously excited. The particular taper
that proved to maximize the power transfer is B(z) =B,
for z <zo, and B(z) =Bgll —a(z —z¢)/R] for z = z,,
where z¢g=0.34 cm and a =0.002. The TEs; mode is seen
to saturate at a distance of 28.3 cm with a peak efficiency
of 57%, corresponding to an output power of 570 kW;
negligible power transfer into the competing modes is
found. In Fig. 2 the influence of axial electron momen-
tum spread is shown. Saturated efficiency, for the same
B-field profile used in the cold beam case (Fig. 1), is seen
to drop from 57% to 40% as the fractional axial momen-
tum spread Su/u increases from zero to 15%. But the
linearly tapered B-field profile is not necessarily the op-
timum for achieving the highest power transfer. Figure 3
shows results for a cold beam when the profile is chosen
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FIG. 2. Maximum efficiency for fifth harmonic conversion as
a function of axial velocity spread éu/u for the linear B-field
taper of Fig. 1.
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FIG. 3. Efficiency vs interaction length for fifth harmonic
conversion using a cold beam in a nonlinear B-field taper.
B =By for z <2.2R, and B(z) tapered to maintain exact phase
matching for z > 2.2R. R=0.34 cm.

to preserve exact phase matching along the entire interac-
tion length. Here a saturated efficiency of 70.5% is found
for the fifth harmonic TEs; mode at a distance of 50.3
cm, with again negligible power in the competing modes.
Examination of the electron distribution at the point of
maximum power transfer shows that residual momentum
is essentially in the axial component, and that the parti-
cles all have the same energy, regardless of their gyration
phase. Saturation is due to the nearly complete depletion
of the transverse energy of the beam, mainly by transfer
to the radiation fields, but (to a small extent) by transfer
in the down-tapered magnetic field to axial particle
motion. The particle phases remain favorable for power
flow into the radiation fields throughout the interaction,
and thus do not exhibit trapping in an unfavorable phase
that could otherwise limit the interaction efficiency.

In conclusion, a multimode nonlinear theory has been
developed to describe the transfer of power from a spa-
tiotemporally modulated electron beam to the fields of cy-
lindrical waveguide in a nonuniform axially symmetric
guide magnetic field. This theory is applicable to a wide
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range of gyroresonant traveling wave interactions. For a
beam with an axisymmetric distribution of guiding
centers, coupling is shown to be absent for all TM modes
and for TE modes whose azimuthal mode index is not
equal to the harmonic number. Power transfer to a
phase-matched mode has been shown to occur with high
efficiency: The 70% value predicted for fifth harmonic
conversion corresponds to transfer of 88% of the initial
transverse beam energy to radiation—a value that is (to
our knowledge) unprecedented for high-power milli-
meter-wave harmonic generation. Negligible power is
transferred to competing modes when the B-field taper is
judiciously chosen. Conditions have been found where
the power transfer is relatively insensitive to axial
momentum spread on the beam. Overall harmonic con-
version efficiency for a device based on the theory out-
lined here could approach 100%, since a single stage
depressed collector should be capable of recovering the
residual beam power.
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