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Quantum Effects on the Herringbone Ordering of N3 on Graphite
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The effects of quantum fluctuations on the “2-in” herringbone ordering in a realistic model of
900 N2 molecules adsorbed in the (v/3 x v/3) R30° structure on graphite are studied via path-integral
Monte Carlo (PIMC) simulations. Quasiclassical and quasiharmonic calculations agree for high and
low temperatures, respectively, but only PIMC gives satisfactory results over the entire temperature
range. We can quantify the lowering of the transition temperature and the depression of the ground
state order to 10% as compared to classical modeling.

PACS numbers: 61.20.Ja, 05.30.—d, 64.70.—p, 68.60.—p

For many years adsorbed layers of Ny on graphite have
served (see, e.g., Refs. [1-9]) as a prototype example to
study phase transitions in two dimensions. The phase
diagram [1] includes below 50 K a registered phase hav-
ing a commensurate (v/3 x v/3)R30° structure. The ori-
entations of the molecular axes undergo in this phase
an orientational phase transition quite independent from
coverage (below a coverage of 1.2) at around 27 K to
the “2-in” herringbone phase keeping the translationally
ordered /3 structure of the molecular centers of mass.

This orientationally ordered phase of Ny on graphite
has been studied experimentally [1-3] and theoretically
[3-9] under various aspects until very recently. However,
all theoretical investigations of the phase transition itself
were carried out with purely classical methods or on the
mean-field level. We address in this Letter the problem of
quantifying the effect of gquantum fluctuation on the ori-
entational ordering in this molecular system. A method
suited to study finite-temperature many-body quantum
systems is the path-integral Monte Carlo (PIMC) tech-
nique; see, e.g., Ref. [10] for an introduction. We have
already used such an approach to study phase transi-
tions in a simplified model adsorbate with internal quan-
tum states [11]. In the present communication, a very
efficient PIMC scheme [12] especially tailored to simu-
late rotational motion is used for the first time to study
a many-body system. This allows us to investigate a
highly realistic adsorbate composed of as many as 900
quantum Ny rotators and Trotter dimensions up to 500.

Thus, we are able to quantify for the first time the influ-
ence of quantum fluctuations on a collective phenomenon
in a molecular system beyond strongly simplified models
or approximations. We compare our benchmark data,
which are exact over the whole temperature range of ex-
perimental interest, to quasiharmonic results and qua-
siclassical Feynman-Hibbs effective potential simulations
at low and high temperatures, respectively.

The PIMC approach [10] is by now a well established
and efficient tool to study quantum effects in many-body
systems. However, only recently [12] a first step to sim-
ulate directly rotational motion in a one-particle prob-
lem was done. Now, we successfully generalize this ap-
proach to the nontrivial case of many interacting rota-
tors. Starting from the N-particle Hamiltonian including
an external crystal-field V(1) and the interaction poten-
tial V@, we apply the Trotter theorem [13] to the par-
tition function Zy = Trexp( - ﬁE[L2/2I +V ()

+V@{p,1)]), where L;, ¢;, and I;(= h2/2® ;) are an-
gular momentum operator, angle operator, and moment
of inertia of the jth molecule. Only after a Poisson trans-
formation to the so-called “winding-number representa-
tion” is a numerical stable path-integral representation
found. The major difference from Cartesian path inte-
grals is that the circle is a multiply connected space; i.e.,
the complete path integral consists of a usual path inte-
gration in each homotopy class and an additional regular
summation over all these classes [13]. In the resulting
PIMC partition function for the interacting case with
Trotter dimension P,
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we specified nearest neighbor (j,4) interactions. The closed paths or ring polymers [10] are now defined in angle space

and the cyclic boundary conditions <,0(P+1) cp(l)
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of the paths have to be understood modulo 2n;m.
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This formulation of the problem does not take into ac-
count the consequences of the indistinguishability of the
nuclei, but it is an ezcellent approximation for the present
case as explicitly demonstrated in Ref. [12]. In the al-
gorithm, we include local and global angle moves sup-
plemented by superglobal winding-number moves, which
are in spirit similar to moves in world-line MC [10] or
exchange-permutation moves [14]. As tested against ex-
act results for a one-particle case, the algorithm assures
the correctly weighted path integration over the homo-
topy classes; the Trotter dimension was large enough to
reach the Trotter limit within the statistical error bars.
In addition to these full quantum PIMC calculations, we
performed quadratic Feynman-Hibbs effective potential
calculations; see Ref. [15] for applications, suitably gen-
eralized for coordinates with constraints. Following Refs.
[16,17], we used a quasiharmonic quantum theory to ap-
proximate the librational motion at low temperatures.

Following our aim, we try to capture as much of the
microscopic features of the system as possible, but re-
stricting ourselves at the same time to design a model
which is just tractable with modern techniques. First of
all, we pin the molecular centers of mass on a regular trig-
onal /3 superlattice found experimentally [1-3] and con-
firmed as an excellent approximation in previous investi-
gations [5]. In addition, it is established by several meth-
ods that the molecular axes stay in the graphite plane [2,
3, 6, 8] with a very sharp distribution [3, 6] around this
favored plane nearby and below the orientational transi-
tion. Concerning the N,-Ns interactions, the well estab-
lished [8] X1 model [18] consisting of site-site Lennard-
Jones and quadrupole interactions was shown to yield a
realistic representation; Oy, = 2.9 K. Steele’s Fourier
representation [19] is used to model the Ny-graphite in-
teractions.

The herringbone order parameter [5] (OP) @& =
({322 _, @2 ]Y/2) possessing the symmetry of the prob-
lem is defined with suitably generalized components for
PIMC investigations,

N P
1 . .
o, = NP E E sm(2<p§-s) — 2n,) expliQq - 1j]
j=1s=1
(2)

where Q1 = 2(0,2/v3)/a’, Q; = 2n(~1,-1/3)/d,
Q3 = 27‘-(17—1/\/:?)/0’/ and m = 0) N2 = 271'/3, n3 =
47/3; o’ = v/3a, and a = 2.46 A. Two alternative defini-
tions of the OP with different ordering of the summations
and average were tested, but all of them gave the same
values within the statistical error bars. In addition, we
present the heat capacity via the fluctuation relation in
the classical case and via the temperature derivative of
the energy in the quantum case; in the latter case error
bars are difficult to assess.

The first signature of the orientational transition can
be identified in the anomaly of the heat capacity around
35 K; see Fig. 1. Switching off the Na-substrate inter-
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FIG. 1. Heat capacity per molecule (see text) as a func-
tion of temperature. Quantum simulation, circles; classical
simulation, squares. The lines are linear connections.

action does not change the behavior. Several features
distinguish the quantum result from the classical one.
As expected, the quantum peak is smeared out and low-
ered due to quantum fluctuations on top of the thermal
ones. In addition, quantum effects lower the transition
temperature T, by nearly 10%. The most striking quali-
tative difference is the decay of the quantum heat capac-
ity to zero upon approaching low temperatures whereas
the classical curve merges into the Dulong-Petit value at
T = 0. The zero-point energy due to librational motion
in the potential minima can be quantified to amount to
approximately 30 K.

The central quantity is the OP as a function of temper-
ature; see Fig. 2. The point of inflection of the classical
curve can be located around 38 K. Analogous classical
models with rotations and translations in three dimen-
sions yield a similar T.: 33 K [6] with 96 molecules,
28 K [7] with 64 molecules. The agreement with these
classical simulations shows that our model captures the
orientational transition of Ny on graphite extremely well.
At high temperatures, the quantum curve of the OP
merges on the classical curve, whereas it starts to devi-
ate below T,. Qualitatively, quantum fluctuations lower
the ordering and thus the quantum OP is always smaller
than the classical counterpart. This behavior can be visu-
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FIG. 2. Herringbone order parameter as a function of

temperature; symbols as in Fig. 1.
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alized by presenting angle distributions in Fig. 3. Plotted
in the direction of a given angle is the probability of find-
ing this angle in the simulation; the maximum diameter
is out of scale but the same in all graphs and we show
for clarity only a patch of 36 molecules out of the 900.
At low temperatures (5 K) the classical distribution in
(b) is sharply peaked around the directions correspond-
ing to herringbone ordering. In (a), the same situation
is presented but now includes the additional quantum
fluctuations. These fluctuations allow one to populate
angle configurations that are classically forbidden at a
given temperature. One clearly sees a substantial broad-
ening of the distributions due to quantum librations of
the molecules in the herringbone potential wells. Near
T, in (c), the herringbone ordering is decreased as indi-
cated by nonzero probabilities for the molecules to stay
perpendicular to the preferred directions. In the high
temperature limit (200 K) in (d), the rotators are com-
pletely free and an isotropic angle distribution without
quantum corrections is reached.

The inclusion of quantum effects results in a nearly
10% lowering of T,; see Fig. 2. Furthermore, we can infer
quantitatively from our data in Fig. 2 that the quantum
system cannot reach the maximum herringbone ordering
even at extremely low temperatures: the quantum libra-
tions depress the saturation value by 10%; since the OP
at 15 K is only 1% lower than at 5 K the ground state
OP seems to be safely reached at our lowest tempera-
ture. This situation should be compared to the spin—%—
quantum Heisenberg antiferromagnet in two dimensions
where the ground state staggered magnetization is re-
duced [20] from its Néel, or classical, value; no OP re-
duction due to quantum fluctuations is observed for the
ferromagnet. In Fig. 4, we compare in detail OP and
total energy as obtained from the full quantum simula-
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FIG. 3. Angle distributions; see text. (a) 5 K, quantum
simulation (QU); (b) 5 K, classical simulation (CL); (c) 35 K,
QU; (d) 200 K, CL.
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tion with approximate theories valid for low and high
temperatures. One can clearly see how the quasiclassical
Feynman-Hibbs curve matches the “exact” quantum data
above ~ 30 K. However, just below the phase transition,
this second order approximation in the quantum fluctu-
ations fails and yields uncontrolled estimates: just below
the point of failure it gives classical values for the OP
and the herringbone ordering even vanishes below 5 K.
On the other hand, the quasiharmonic theory comes from
the other end of the temperature axis and yields very ac-
curate data below 5 K. Similar ranges of validity can be
based on the heat capacity. In addition to OP and energy,
our PIMC technique also allows one to extract an average
zero-point libration amplitude (14°) from the “radius of
gyration”of the angular ring polymers, which compares
favorably to the 0 K data from this approximation (13°)
and to the quasiharmonic lattice dynamics [8] (18°) for
X1 N, in three dimensions including translations. Since
the range of validity of such approximations is very diffi-
cult to estimate a priors (see Ref. [21] for a critical and ex-
tensive discussion), exact full quantum reference simula-
tions as presented here for a specific phase transition are
clearly required to control such approximation schemes.
This becomes clear when one considers the shift in 7, as
obtained from the second order Feynman-Hibbs simula-
tion: it breaks down essentially at the same temperature
where the phase transition occurs and a breakdown at a
slightly higher temperature would give a wrong result. In
addition, one does not know where to match the regimes
where different approximations are still valid. The PIMC
simulations, however, yield exact results over the whole
temperature range from the classical to the deep quan-
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FIG. 4. Herringbone order parameter and total energy
(inset) as a function of temperature. Quantum simulation,
full line; classical simulation, dotted line; quasiharmonic the-
ory, dashed line; Feynman-Hibbs simulation, triangles. The
lines are linear connections of the data.



VOLUME 70, NUMBER 19

PHYSICAL REVIEW LETTERS

10 MAY 1993

tum regime.

To sum up, using a novel path-integral Monte Carlo
technique optimized for the direct simulation of rota-
tional motion in many-body systems, we investigated
quantitatively the role of quantum fluctuations concern-
ing orientational ordering properties in a molecular sys-
tem, namely, (v/3 x v/3) R30° N3 monolayers on graphite.
A highly realistic model using 900 molecules was designed
to capture the essential features of the orientational or-
dering transition to the “2-in”herringbone phase. The
peak shape of heat capacity, which vanishes correctly
as T — 0, is strongly distorted at the low temperature
wing due to quantum effects. We find a suppression of
the orientational transition temperature due to quantum
fluctuations of nearly 10%; this is considerably less than
previously estimated. In addition, our method yields
a decrease of the ground state herringbone ordering of
10%, which is caused by quantum librations of the N,
molecules in the potential wells. Comparison of our full
quantum benchmark data with quasiclassical and quasi-
harmonic results shows that these approximations ac-
count for the high and low temperature properties, which
is an a posteriori justification of their usefulness for the
present system. Since our approach is not restricted to
nearly classical systems, techniques similar to those pre-
sented here may serve in the future to investigate quan-
titatively quantum effects on such collective phenomena
in a whole class of realistic molecular adsorbates, as, e.g.,
H, layers, where more pronounced quantum effects are
expected.
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