
VOLUME 70, NUMBER 19 PHYSICAL REVIEW LETTERS 10 MAY 1993

Analysis of Reflection High Energy Electron Diffraction Azimuthal Plots
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Reflection high energy electron diffraction data collected in the form of an azimuthal plot are ana-
lyzed theoretically for the first time. Experimental results for Si(111) at a glancing angle satisfying a
Bragg condition are taken from the literature. Calculations are carried out within a multiple scattering
approach. Excellent agreement between experimental and theoretical results is achieved. A simple
qualitative explanation of the shape of the azimuthal plot analyzed is also presented.

PACS numbers: 61.14.Hg, 68.35.8s, 68.55.Jk

At present, reflection high energy electron diffraction
(RHEED) is widely used for controlling the growth of ul-

trathin films [1]. The use of RHEED became very popu-
lar after the discovery of RHEED intensity oscillations
by Harris, Joyce, and Dobson [2]. It is well established
that for layer-by-layer growth the intensity of the specu-
lar beam oscillates with a period corresponding to deposi-
tion of one atomic layer. There are different simplified
theoretical descriptions of this phenomenon [3-5]. It has
recently been shown that when diffraction conditions are
specially selected it is possible to obtain good agreement
between experimental and theoretical results using these
descriptions [6-8]. However, it is clear from recent re-
search that a better understanding of the phenomenon of
RHEED oscillations can be achieved only after improve-
ment in the fundamental understanding of RHEED from
flat and growing surfaces.

So far, fundamental research on RHEED has been de-
voted to theoretical analysis of experimental rocking
curves, i.e., the intensity of reflected electron beams col-
lected while varying the glancing angle of the incident
beam (assuming that the shape of the surface remains
constant during measurements). There are examples of
successful analyses of RHEED rocking curves for simple
surfaces [9,10]. Generally, it has been found that a good
quantitative description of RHEED results can be
achieved when multiple scattering of electrons is con-
sidered. However, it has also been found that for inter-
pretation of RHEED rocking curves it is necessary to
consider the interaction between a large number of
diffracted beams and the origin of peaks in the experi-
mental data is dificult to understand qualitatively. This
implies that theoretical analysis requires extensive nu-
merical calculations. All the above-mentioned findings
are true for a wide range of surface structures (including
relatively simple ones) and are discussed in detail in the
literature, for example, in Refs. [11,12]. Such a situation
causes practical difticulties in attempts to analyze precise-
ly rocking curves from surfaces with complicated struc-
tures. First, because multiple scattering effects may not
be simply predictable it is not easy to recognize them
when they exist together with inelastic and diffuse scat-
tering effects. Second, calculations for complicated sur-
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FIG. l. (a) An experimental azimuthal plot for 40 keV elec-
trons incident on the Si(l 1 1) surface at a glancing angle satis-
fying the 444 Bragg condition [15]. (b) The calculated azimu-
thal plot corresponding to the data shown in (a). Values of the
azimuthal angle N of 0 and 30 deg correspond to the azimuths
(101) and (112), respectively.
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faces require enormous amounts of computer time. Re-
cent papers on Pt(110)-(2 && 1) [131 and GaAs(001)-
(2&&4) [14] demonstrate that it is possible to overcome
these di%culties successfully. However, it is also clear
from these papers that the actual possibilities for carrying
out similar analyses are very limited.

In this Letter we analyze for the first time experimen-
tal data collected in the form of an azimuthal plot, i.e.,
the specular beam intensity measured while rotating a
sample around the axis perpendicular to the surface.
There are a few examples of such plots [15-17] in the
literature. Because they have complicated shapes with a
large number of sudden peaks and valleys [see Fig. 1(a)],
they were considered difticult to explain and no theoreti-
cal interpretation has been performed so far. The results
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of this Letter suggest a reassessment of the usefulness of
azimuthal plots: It is shown that for azimuthal plots it is
possible to obtain a very good quantitative theoretical ex-
planation and also a simple qualitative one.

Experimental data for Si(111) collected by Menadue
[15] more than twenty years ago were taken from the
literature. So far, these data have remained unanalyzed.
Calculations were carried out using a numerical program
based on the combination of a two-dimensional Bloch
wave theory of RHEED [18] and a layer doubling algo-
rithm developed originally in the theory of LEED [19].
The program has been already described in detail
[9,11,20]. Results of the calculations shown in Fig. 1(b)
were carried out for 35 beams. The choice of beams is
discussed in a later part of the Letter. We checked that
including more beams changes the intensity by an
amount smaller than the experiment error [as deduced
from comparison of the shape of the curve from Fig. 1(a)
around the symmetrical azimuth (112)]. The real part of
the potential used in the calculations was determined ini-
tially from the electron scattering coeScients tabulated
by Doyle and Turner [21] but corrected for thermal vi-
brations at 300 K. Next, the real part of the potential
was relativistically corrected [9] and finally a constant
component was added to fit the average volume potential
to the value of —12 eV determined experimentally [15].
The imaginary part of the potential was assumed to be
equal to 0. 1 of the real part taken without the correction
of the average value. The calculations were carried out
for incident electrons of 40 keV (but this value was actu-
ally taken into account after adding a relativistic correc-
tion [9]) and for the glancing angle of 1.982' which cor-
responds to the 444 Bragg reflection. All the above-
mentioned parameter values match the experimental con-
ditions of Menadue [15]. We have assumed a bulk ter-
minated surface for Si(111), since there is very little in-
formation on the surface reconstruction of the measured
sample. However, because of the use of the glancing an-
gle satisfying the Bragg condition we expect that
diffraction effects are caused mainly by deeper layers of
the crystal.

Comparing the experimental and theoretical results
[Figs. 1(a) and 1(b)] we can observe very good agree-
ment between them. All the peaks and valleys found
in the measurements are well reproduced numerically.
Moreover, their relative maxima and minima, respective-
ly, are also well determined by calculations. This means
that multiple scattering theory can describe properly the
shapes of azimuthal plots. It seems important to consider
whether we could explain the azimuthal plot from Fig.
1(a) using the simpler, single scattering theory of diffrac-
tion (usually called the kinematic theory). The kinematic
theory fails because the final formulas for the intensity of
the specularly reflected beam do not depend on the az-
imuthal angle of the incident beam (for example [22]).
In other words, the intensity is predicted to remain con-
stant during azimuthal variations. This means that

analysis of azimuthal plots can be carried out only with
the use of approaches including multiple scattering (dy-
namical) effects.

Both the experimental and calculated curves from Fig.
I have very complicated shapes. However, we have found
that they can easily be described qualitatively. Before
demonstrating this we discuss some details of the two-
dimensional Bloch wave approach. In this approach it is
assumed that the scattering potential is periodic in the
two dimensions parallel to the surface. Because of this it
is possible to expand the whole electron wave function
+(r) in the following form [18]:

0'(r) =g [Q, (z) exp( —ik z)+Q+(z) exp(+ik z)]

e'(r) = exp( —ikoz) exp(ik~~. p)

+JR exp(+ik z)exp[i(kt~+a) p] . (3)

The first term in (3) represents the incident electron
wave. The further terms are reflected waves, which can
be propagating (k )0) or evanescent (k (0). Each
propagating wave can be observed experimentally as it
causes the existence of a spot at the screen. This situa-
tion can be explained with the help of the well-known
Ewald's construction [1]. Each rod in the two-dimen-
sional reciprocal mesh corresponds to one beam, but only
beams for which k )0 can give a contribution to the
pattern on the screen. It is clear that it is possible to
fulfill the following condition:

k =0

This situation is called a beam emergence condition and
it corresponds to the existence of a spot just at the sha-
dow edge at the RHEED screen. When condition (4) for
any beam is exactly fulfilled then expansion (1) cannot be
applied. Because of this, such situations are excluded
from the present theoretical treatment within the two-
dimensional Bloch wave approach and also from calcula-
tions with the numerical program described. However, it
has already been demonstrated that by using the layer
doubling algorithm it is possible to carrying out conver-
gent and stable calculations when values of k„are very

xexp[i(k()+a) p],
where x is a vector in the 2D surface reciprocal mesh, k[[
is the parallel component of the incident electron wave
vector k, and p is the parallel component of r. The per-
pendicular wave vector magnitudes k obey the following
relation:

k'=k' —(k +~)'
In this approach the word "beam" usually means the
term corresponding with one value of the vector x'.

Above the surface (z )0) the wave function %'(r) has
a very simple form for which a physical interpretation ex-
ists. In this case we can write
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close to satisfying condition (4) [23].
We now return to the qualitative description of the az-

imuthal plots. It turns out that most of the fluctuations
in the intensity can be described qualitatively as a simple
sum of eA'ects accompanying interactions between the
main beam (i.e., assigned to the zeroth vector of the two-
dimensional reciprocal mesh) and those which are close
to satisfying beam emergence conditions (4). Figure 2

shows the set of beams used to carry out the 35-beam cal-
culations presented in Fig. 1(b). This set includes all the
important beams for which it is possible to satisfy condi-
tion (4) while varying the azimuthal angle within the
chosen range (but it also includes other beams which
turned out to be relevant for precise quantitative
analysis). To study effects connected with satisfying the
conditions determined by Eq. (4) we calculated a number
of azimuthal plots in a simplified way. The curves
presented in Fig. 3 were obtained in three-beam calcula-
tions, i.e., for each curve only the main and two side
beams were taken into account. The reason it is not use-
ful to carry out calculations for less than three beams is

that Eq. (4) can often be satisfied in a very narrow az-
imuthal range for two opposite side beams. It can be seen
that most of the peaks and valleys from Fig. 1 are present
in Fig. 3. It can be observed also that in a wide region
between the (101) and (112) azimuths the shapes of the
curves of Fig. 1 can be reproduced roughly by summing

up intensity changes from three-beam calculations. The
only exception to this rule is near the (101) and (112) az-
imuths, but this is to be expected as, for these azimuthal
ranges, many beam emergence conditions exist and so
strong interaction occur between many beams.

Some comment should be added on the possible origin
of eA'ects accompanying the satisfaction of the beam
emergence condition (4) for one of the beams, if we as-
sume an interaction only between that beam and the
main one. We expect that for the case k )0 (the prop-
agating wave case) peaks and valleys in the specular
beam intensity appear due to secondary Bragg reflections.
For k (0 (the evanescent wave case) we expect that
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changes in the specular beam intensity are caused by sur-
face resonances. (A detailed discussion of the nature of
these diA'raction phenomena can be found in Refs.
[19,24].)

On the basis of the results presented it is possible to
draw conclusions about further investigations concerning
azimuthal plots measured between principal azimuth
directions. In such regions it should be possible to detect
experimentally and recognize uniquely multiple scattering
eAects connected with the lateral arrangements of atoms.
This may help to estimate the significance of such eAects
for the cases of reconstructed and/or strongly disordered
surfaces. In addition, because the approximate three-
beam treatment works for flat surfaces, it should be rela-
tively simple to extend the theoretical work to rough sur-
faces (for example, by using perturbation methods). It
should be possible also to develop an analytical treatment
of intensity changes accompanying the beam emergence
conditions.

In conclusion, we have shown that for flat surfaces it is

possible to obtain an excellent quantitative and qualita-
tive theoretical description of azimuthal plots and the key
to this is the use of an accurate multiple scattering
theory. The azimuthal plots may be useful for studying
the fundamentals of RHEED and it should be possible to
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FIG. 2. The set of beams used in 35-beam calculations.

FIG. 3. Azimuthal plots obtained from three-beam calcula-
tions. The two side beams included in the calculation of each
curve are given in the figure together with arrows indicating the
beam emergence conditions.
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exploit them in surface structural analysis.
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