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Anomalous Diffusion in the Kuramoto-Sivashinsky Equation
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We study the motion of advected particles in the Kuramoto-Sivashinsky equation. We give numerical
evidence as well as analytical arguments for anomalous diAusion in which the particle displacement hr
satisfies &[hr(t)] &

—t" where ti & 1. We show that if the flow is initially seeded with many particles,
they will coalesce in time and that a passive scalar density tends to an asymptotic (time dependent) dis-
tribution, which, for given initial conditions on the velocity field, is independent of the initial distribution
of the passive scalar.

PACS numbers: 47.27.Qb, 05.40.+j, 05.45.+b, 47.52.+j

The problem of understanding the motion of advected
particles in a turbulent Auid is of both fundamental and
practical importance. Unfortunately it is also a very hard
problem of which our knowledge is far from complete
[1,2]. In the following we shall describe some new results
obtained in a simplified variant: Auid Aow in one dimen-
sion. More precisely, we shall describe the advection of a
passive scalar in a simple nonlinear equation for a veloci-
ty field —the so-called Kuramoto-Sivashinsky (or Kura-
moto-Sivashinsky-Burgers) equation [3,4], which is,
perhaps, the simplest nonlinear field equation exhibiting
turbulence (i.e. , spatiotemporal chaos) and applicable to
a wide class of phenomena from chemical turbulence [3]
to flame fronts [4]. When the motion of a single "dust
particle, " immersed in this one-dimensional turbulent
"fluid, " is followed, we find anomalous diffusion [5-10],
i.e. , the mean squared distance ([dr(t)] ) traversed in

time t grows as

([t),r(t)] ') -t",
where g is larger than unity.

Similar effects are seen in the phase space of low-
dimensional chaotic systems [11] and experimentally in

the spreading of dye of a turbulent fluid surface [12].
Related phenomena have been seen in fluids with ordered
roll structures, as, e.g. , convective rolls where an exponent
tl= —,

' was theoretically predicted [13] and found experi-
mentally [14], and in Richardson's famous "—', law" [15]
for relatii. e diffusion is fully developed turbulence, which
corresponds to g =3. Further one should note that such
anomalies are to some extent expected in low-dimensional
systems, being the analogs of the "long time tails" seen in
higher-dimensional transport coe%cients (see, e.g. , [16]).
Anomalous diffusion has also been studied in relation to
particle motion in models of 2D turbulence [17],when an
anomalous power spectrum for the stream function is as-
sumed, and by renormalization group methods (in arbi-
trary dimension) by assuming difl'erent forms of the
subgrid velocities [18].

In the Kuramoto-Sivashinsky (KS) equation we find

that particles coalesce instead of drifting apart, but the
motion of a single particle shows the anomalous ex-
ponent. The effect seems to be intimately connected with
the cellular structure being caused by large scale motions
of the pattern as a whole. As we shall see the strongly ir-
reversible character of the motion of random walkers
(Fig. 4) is a powerful probe of the underlying dynamics.

The equations we study are the following:

Bu +uVu= —V u —V u,

dr =u(r(t), t),
dt

where u(x, t) is a velocity field in one dimension and r(t)
is the trajectory of a particle immersed in the Auid. The
velocity field becomes turbulent with an irregular cellular
structure and the particle is attracted to the points where
the (strongly compressible) fluid converges, i.e. , the zeros
in the velocity field, where u is positive to the left and
negative to the right. The other zeros are repelling.

We have initiated (2) with a random initial condition
(and periodic boundary conditions on a system of length
Z) and let them evolve in time until a statistically steady
turbulent state is obtained [19,20]. Then we start (3) at
some random position and study the subsequent evolution
of r(t) and u. Although the motion appears random, the
particle moves almost ballistically for long stretches —of
the order of several thousands of time units in a system of
I =1000. This anomalous appearance can be quantified
by looking at the mean square of the traversed distance
([Ar(t)l ) which is defined by averaging the square of the
displacement [dr(t)] =[r(t'+t) —r(t')] over the start-
ing time t'. In Fig. I a typical plot of ([t)r(t)] ) is shown.
It was obtained by averaging over t' in (several) histories
r(t) of 50000 time units in a system of effective size
L =4277.5 (using a spectral method [19]). It is seen
that, for times t up to around 10000, we can fit very well
by the form (I) with an exponent ti=1.4. For the largest
times normal diffusion is regained.

We have simulated the Kuramoto-Sivashinsky equa-
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where the limit means t ~ (to get a stationary pro-
cess) and infinite system size, L

I n general, if we consider the Langevin equation
r =f(t) we can express the diffusion in terms of the
correlation function for f by the so-called Green-Kubo
formula (see, e.g. , [16]):

IO
I

t

([r(t) —r(0)] ) 2t (f(r )f(0))dz, (7)
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FIG. I. &[Ar(t)] & vs t The two d. ashed lines have slopes —',

and —', , respectively. The best fit gives @=1.38. The inset
shows the logarithmic derivative.

= vV'u+ ti(x, t) .
t

(5)

For this equation it is easy to compute correlation func-
tions. The general two-point correlation function for (5)
is

tion in different ways: by simple finite differencing with
different spatial resolution (lattice spacing 1 and 0.5) and
time steps (0. 1 and 0.05) and further by a spectral
method [19]. In all cases the diffusion is clearly anoma-
lous, in the L =1000 case for times up to a few thousand.
The value of the exponent g varies, however, in the range

3 ( g & 2 . For a system size L = 1 000 and lattice spac-
ing 1 we thus find g =1.33, whereas we find g =1.45 for
lattice spacing 0.5 (which is as small as we can make it
since every doubling of the spatial resolution costs a fac-
tor 16 in computing time). For smaller systems we see
similar behavior, but the crossover happens at shorter
times. We have also looked at higher moments of /sr(t),
with moments p up to 8, and we find that the scaling is
characterized very well by one scaling exponent indepen-
dent of p. Thus (lhr(t)l ) —t "t't and there is no sign of
"m u 1tifractality. "

To understand these results from an analytic point of
view, we shall use the well-known equivalence between
the Kuramoto-Sivashinsky equation and the Burgers
equation with noise [19-23]. In the latter equation

Bu + uVu = vV'u+ ri(x, t),
Bt

the instability supplied by the negative surface tension in

(2) has been replaced by the noise ti, where (g(x, t)
&& @(x',t')) = —I V 6(x — )Bx(t —t') and a positive sur-
face tension.

For short times and small systems the statistical prop-
erties of (4) can be found from the linearized version [24]

1
"'

1p(t) =
t 1/2 g p

where [25] to=16trv /I . The solution is

[br(t)]'=4vty(t) =4vt In[1+ (t/to) ' '], (9)

which means that the diffusion is anomalous with ex-
ponent g =

2 up to time to and then crosses over to the
behavior

([r(t) —r(0)] ) —t lnt . (10)

Unexpectedly, it never becomes quite normal. Such loga-
rithmic corrections have been predicted earlier in the con-
text to fluid flows through porous media [26]. For finite
systems the diffusion does finally become normal. The
largest correction to (6) in the limit L)) 1 is L
xexp[ —(2tr/L) vt] (coming from the replacement of the
discrete sum over Fourier components k„=2trn/L by an
integral) and will lead to normal difl'usion for times
larger than t~ =L /4x v.

For the nonlinear case (4) the precise form of the
correlation function is not known. Only the scaling form

(u(x+r, t+ r )u(x, t))—r "H(r'/r ),
where the scaling function H(g) 0 for g ~ and
H(g) const for ( 0, and where the dynamical ex-
ponent z =

2 [21]. Applying the same mean field ap-
proach as above we now see that there exists a self-
consistent solution

where again t must be large enough for the process to be
stationary. Now, in the equation for the advected parti-
cle, f(t) =u(r(t), t) which we do not know until r(t) has
been calculated. To overcome this difficulty in a self-
consistent way, we shall now make the bold assumption
that we can describe the statistics of the advected particle
by the Green-Kubo formula, where the correlation func-
tion (f(r)f(0)) is replaced by (u(x+r, t+r)u(x, t))
evaluated at hr =dr(r ) = [([r(r ) —r(0)] )j ' . This is a
kind of mean geld approach akin to those used in classi-
cal turbulence theory [2]. Although this approximation
will certainly get numerical factors wrong, we hope that
the scaling exponent g will be correctly reproduced.

We first apply this approximation to the linearized
equation (5) together with (3). If we let [Ar(t)] =4vt
x P(t) we get
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FIG. 2. Space-time plot of many walkers. The flow was ini-
tially seeded with 46 walkers.

([r(t) —r(0)] )—t (12)

even asymptotically, in contrast to the case z =2 treated
above. We thus expect the diffusion to be anomalous in
the nonlinear case, cut off only by finite system effects. It
is interesting that asymptotic power law behavior is only
possible when z =

2 .
For the Kuramoto-Sivashinsky equation the true

asymptotic properties should be given by the nonlinear
case above with the result g= 3 . We know, however,
that (2) behaves like the linear system for small L and
that the crossover to (4) is very slow [19,20]. Further we
know that the effective surface tension v is very large, of
the order of 10, due to the cellular structure [20], which
means that to defined above is huge. Finally we know,
also from [20], that the precise way in which we simulate
(2) changes the effective parameters in (4) and thus
changes the crossover point. Thus we should in principle
be able to see both t, t lnt, t, and t depending on sys-
tem size and effective parameters. Of course we cannot
rule out the possibility that the asymptotic value of g is
different from 3 since we do not know the accuracy of
the mean field approximation made.

If we seed the flow with several particles, again pro-
pagated by (2) and one (3) for each particle we find that
they coalesce in time. Figure 2 shows the fate of 46 par-
ticles. After 2000 iterates only 5 remain. In this plot we
do indeed see some indication that the long stretches of
almost ballistic motion are caused by coherent motion of
patches in the cellular structure, since nearby walkers
tend to follow each other. This can also be seen in Fig. 3
where the zeros of the velocity field are shown. The thick
lines are the "attractive" zeros, where the particles like to
sit, whereas the thin lines are the repelling zeros. We see
that attractI've lines do not split in time. They only

6T +V(Tv) =IVIV T,
t

(13)

combined with the KS equation (2). What we have stud-
ied above is the limit v 0.

In Fig. 4 we show the field T after 10 times units (for
L =1000 and x =2). The initial condition was T=0
everywhere except at x =500, where it was 1, i.e., a "sin-
gle drop of ink" in the center. Again, the final density
clearly reflects the cellular structure. And, strangely
enough at first sight, the distribution is unique: Although
it will still vary in time, different initial distributions
T(x) will all lead to the same final state —provided, nat-
urally, that the initial conditions for the velocity field are
the same. Thus Fig. 4 could be obtained just as well with
a uniform initial T(x) =const. It is amazing that the dy-
namics of the passive scalar retains this attracting proper-
ty even though the velocity field is turbulent in the sense
of having many positive Lyapunov exponents (see, e.g. ,

coalesce, and pairs of attractive/repelling lines can be
created. The splitting, on the other hand, takes place
around the unstable zeros. This asymmetry is related to
the invariance of (2) under u —u, x —x, t —r;
i.e., attractive lines can be changed to repelling lines
backwards in time. If we think of Fig. 3 as a small part
of a long time history, the walkers will populate some of
the attractive lines emerging at the bottom of the picture.
Subsequently these lines meander and coalesce with other
attractive lines, but do not split. Thus the walkers will
diffuse and coalesce as well. Figure 2 is extremely remin-
iscent of paths formed by directed polymers in a random
environment [27]. In fact, the scaling exponent g = —', is
precisely the one found there.

The "attracting, " i.e., coalescing, property of the many
particle system can be seen clearly when we study the
properties of a passively advected scalar field —i.e., a den-
sity of particles. The equation for a passive scalar, con-
served density T is (see, e.g. , [28])
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FIG. 4. The passive scalar field T, evolved from a single
"drop of ink in the center. "
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