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We evaluate the infinite-volume, continuum limits of eight hadron mass ratios predicted by lattice
@CD with Wilson quarks in the valence (quenched) approximation. Each predicted ratio diB'ers
from the corresponding observed value by less than 6'Po.
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A key goal of the lattice formulation of QCD is to re-
produce the masses of the low-lying baryons and mesons.
Lattice QCD mass predictions for the real world are sup-
posed to be obtained from masses calculated with finite
lattice spacing and finite lattice volume by taking the
limits of zero spacing and infinite volume. In addition,
since the algorithms used for hadron mass calculations
become progressively slower for small quark masses, re-
sults are presently found with quark masses much larger
than the expected values of the up and down quark
masses. Predictions for the masses of hadrons contain-
ing up and down quarks then require a further extrap-
olation to small quark mass. We report here mass pre-
dictions combining all three extrapolations for Wilson
quarks in the valence (quenched) approximation. This
approximation may be viewed as replacing the momen-
tum and frequency dependent color dielectric constant
arising from quark-antiquark vacuum polarization with
its zero-momentum, zero-frequency limit and might be
expected to be fairly reliable for low-lying baryon and
meson masses [1].

To our knowledge there have been no previous system-
atic attempts to extrapolate hadron masses to physical
quark mass, zero lattice spacing, and infinite volume. For
a review of lattice QCD mass calculations see Ref. [2].

Our main result consists of a prediction of eight dif-
ferent hadron mass ratios. Each of the predicted ratios
differs from experiment by less than 6%%uo. In each case,
the error is less than a factor of 1.6 multiplied by the cor-
responding statistical uncertainty. We believe it is rea-
sonable to take these results as quantitative confirmation
of the mass predictions both of QCD and of the valence
approximation. It seems unlikely to us that the valence
approximation would agree with experiment for eight dif-
ferent mass ratios yet difFer significantly from QCD's pre-
dictions including the full efFect of quark-antiquark vac-
uum polarization.

Following Refs. [3,4], we also determine the continuum

(modified minimal subtraction) coupling constant, g~ l,
from the lattice coupling constant, g~ t, and from g

determine A . Two independent calculations of A(o) (ol

done by rather difFerent methods [3, 5] lie within the 4 o

statistical uncertainty of our continuum, infinite-volume
result for A . The values we obtain for the rho mass at(o)

TABLE I. Configurations analyzed.

Lattice

83x32
16 x 32

243 x 32
24 x 36

30 x 32 x 40

5.7
5.7

5.7
5.93
6.17

0.1400—0.1650
0.1400-0.1550
0.1600—0.1675
0.1600-0.1675
0.1543-0.1581
0.1500—0.1532

Skip

1000
2000
2000
4000
4000
6000

Count

2349
47

219
92

217
219

finite lattice spacing, measured in units of inverse lattice
spacing, depend on g and AMS as predicted by asymp-(o) (o)

totic scaling. This result tends to support the reliability
of our extrapolation of masses to the continuum limit.

In addition to comparing the valence approximation
to QCD with experiment, a goal of the present work is
to develop technology which might be useful in extrapo-
lating results of the full theory to physical quark mass,
infinite volume, and zero lattice spacing.

The calculations described here were done on the GF11
parallel computer at IBM Research Center [6] and took
approximately 1 yr to complete. GFll was used in con-
figurations ranging from 384 to 480 processors, with sus-
tained speeds ranging from 5 GfIops to 7 GfIops. With
the present set of improved algorithms and 480 proces-
sors, these calculations could be repeated in less than 4
months.

Table I lists the lattice sizes and parameter values for
which hadron propagators were evaluated. We chose
periodic boundary conditions in all directions for both
gauge fields and quark fields. Gauge configuations
were generated using a version of the Cabbibo-Marinari-
Okawa algorithm, with the number of sweeps skipped be-
tween configurations and total count of configurations as
given in the table. A variety of correlation tests showed
all of the configurations on which propagators were eval-
uated were statistically independent.

For the 8 x 32 lattice at P of 5.7 we used point sources
and sinks in the quark propagators. For all other lattices
and P, each gauge configuration was transformed to lat-
tice Coulomb gauge and quark propagators were then
found for Gaussian extended sources and for point sinks
and four different sizes of Gaussian sinks [7]. The mean
squared radius of the Gaussian source in all cases was

1993 The American Physical Society 2849



VOLUME 70, NUMBER 19 PHYSICAL REVIEW LETTERS 10 MAY 1993

TABLE II. Changes in mass from a lattice 16 x 32 to a
lattice 24 x 32 at P of 5.7.

Particle

Pion
Rho
Nucleon

Delta

All
0.1675
0.16625
0.1675
0.1675

Change

& 1.2+1.6%
—3.4+1.4%
—4.4+1.7%
—4.6+2.2%
—4.7+2,6%

6, in lattice units. The mean squared radii of the Gaus-
sian sinks ranged from 1.5 to 24, in lattice units. On
the lattice 24s x 32 at p of 5.7, eight independent Gaus-
sian sources were placed on the source hyperplane, each
multiplied by a random cube root of 1 to cancel cross
terms between the propagation of different sources for
both baryon and meson propagators.

Quark propagators were constructed using the conju-
gate gradient algorithm for the 8s x 32 lattice at P of
5.7, using a red-black preconditioned conjugate gradient
for the other lattices at P of 5.7 and 5.93, and using a
red-black preconditioned minimum residual algorithm at
P of 6.17 [8]. At the largest hopping constant values at
P of 5.7 and 5.93, preconditioning the conjugate gradi-
ent algorithm increased its speed by a factor of 3, and
at the largest hopping constant values at P of 6.17, the
change from conjugate gradient to the minimum resid-
ual algorithm yielded an additional factor of 2 in speed.
The convergence criterion used in all cases was equiva-
lent to the requirement that effective pion, rho, nucleon,
and delta masses evaluated between successive pairs of
time slices must be within 0.2' of their values obtained
on propagators run to machine precision.

Hadron masses were determined by fits to hadron prop-
agators constructed from the quark propagators. The
pion mass for all values of the hopping constant k, and
the rho, nucleon, and delta masses for all but the three
largest values of k at each P, were obtained from the prop-
agators for a point sink. At the largest three k values,
the rho, nucleon, and delta baryon masses were found by
simultaneously fitting a single mass value to the propa-
gators for a point sink and for Gaussian sinks with mean
squared radius of 1.5 and 6. The statistical errors for
all fits were determined by the bootstrap method [9]. A
more detailed discussion of our fits and error analysis will
be given elsewhere [10].

Comparing hadron masses in lattice units between the
8s x 32 and 16s x 32 lattices at p of 5.7 for k up to 0.1650
showed no statistically significant differences. Compar-
ing 16 x 32 and 243 x 32 for k up to 0.1675 showed no
statistically significant differences in the pion mass. For
the rho, nucleon, and delta, marginally significant differ-
ences were found at the largest k. Percentage changes
in mass going from 163 x 32 to 24 x 32 are given in
Table II. Although some of the changes shown in Ta-
ble II take smaller values if we use different procedures

to determine hadron masses from hadron propagators,
none become larger [10]. Thus a conservative interpreta-
tion of the changes in Table II is to view them primar-
ily as upper bounds on volume dependence. It appears
quite likely that for the range of k, P, and lattice volume
we have examined, the errors in valence approximation
hadron masses due to calculation in a finite volume I
are bounded by an expression of the form Ce / +, with a
coeFicient R of the order of the radius of a hadron's wave
function. At P of 5.7 for the k we considered, A is thus
typically 3 lattice units. We therefore expect that the
differences between masses on a 16 volume and those on
a 24 volume are nearly equal to the differences between
163 and true infinite volume limiting values.

At the largest k on each lattice, except 8s x 32, the
ratio m /m~ is close to 0.5. For the lattice 8s x 32,
this ratio is 0.691. These values of m /m~ are signifi-
cantly above the experimentally observed value of 0.179
for charge averaged m and mz. To produce mass predic-
tions for hadrons containing only light quarks our data
has to be extrapolated to larger k or, equivalently, to
smaller quark mass. We did not calculate hadron masses
directly at larger k both because the algorithms we used
to find quark propagators became too slow and because
the statistical errors we found in trial calculations became
too large.

For each lattice except 8 x 32, we extrapolated hadron
mass values down to small quark mass. To do this we first
determined the k „qat which m„becomes 0. As expected
from a naive application of PCAC, (m a)2 turned out to
be roughly a linear function of 1/k over the entire range
of k considered on each lattice, and for the three largest
k on each lattice, (m a)2 fit a linear function of 1/k quite
well. From these fits we then found k„;qfor each lattice
and P. Defining the quark mass in lattice units, m~a,
to be 1/2k —1/2k, »t, we found m~a, miva, and m~a to
be roughly linear functions of mqa over the entire range
of k considered on each lattice and quite close to linear
functions at the three smallest m~ (corresponding to the
three largest k). Figure 1 shows ms, m~, mdiv, and m~,
for the lattice 30 x 322 x 40 at P of 6.17, as functions
of mq. The lines in Fig. 1 are fits to each data set at
the three smallest values of mq. For convenience, we
show all hadron masses in units of the physical rho mass,
mz(m„), given by mz evaluated at the "normal" quark
mass m which produces the physical value of m /mz.
The quark mass mq in Fig. 1 is shown in units of the
strange quark mass m„the determination of which will
be discussed below. The fits shown in Fig. 1 appear to
be reasonably good and provide, we believe, a reliable
method for extrapolating hadron masses down to light
quark masses. Fits comparable to those shown were ob-
tained for the nucleon, rho, and delta baryon on all the
lattices we considered except 8 x 32.

Using a version of the Gell-Mann-Okubo mass formula,
the accuracy of linear extrapolation in quark mass can
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FIG. 1. For a 30 x 32 x 40 lattice at P of 6.17, m, m~,
m~, and m~, in units of the physical rho mass m~(m„), as
functions of the quark mass mq, in units of the strange quark
mass m, . The symbol at each point is larger than the error
bars.

FIG. 2. m~/m~ as a function of the lattice spacing a, in
units of I/m~. The straight line is an extraploation to zero
lattice spacing, the error bar at zero lattice spacing is the
uncertainty in the extrapolated ratio, and the point at zero
lattice spacing is the observed value.

be checked with observed hadron masses. For a rho com-
posed of a quark with mass mq and an antiquark with
mass m2, Fig. 1 suggests m~ = nqmq+o. om2+P. Charge
conjugation invariance then gives o.i ——n2. It follows that
the A: star, which is a rho with mi ——m, and m2 = m„,
will have the same mass as a rho composed of a single
type of quark with mq = m2 = (m,, + m„)/2. In the va-
lence approximation the phi is a rho with mi ——m2 ——m, .
The linear relation m~ = o;(mq + m2) + P then permits
the rho mass to be extrapolated from the masses of A:

star and phi. The extrapolated rho mass obtained from
observed A: star and phi masses lies below the observed
rho mass by 0.53%%uo. Similar extrapolations can be made
to determine the nucleon mass from the observed masses
of its strange partners and to determine the delta baryon
mass from its strange partners. The extrapolated nu-
cleon mass is larger than experiment by 1.38%, and the
extrapolated delta baryon mass is large by 0.81'%%uo.

The relations discussed in the preceding paragraph
can also be used to determine the masses of hadrons
composed of both strange and normal quarks from the
masses we have calculated for hadrons composed of a sin-
gle species of heavy quark. Fitting the kaon to the pion
mass at a quark mass of (m, + m„)/2 gives the value for
m, mentioned above. With m, and m„thus determined,
the ratios of eight different hadron mass combinations to
the physical rho mass follow from our data with no ad-
ditional free parameters.

These ratios we extrapolated to zero lattice spacing
with the physical lattice volume nearly held fixed. For
Wilson fermions the leading lattice spacing dependence
in mass ratios is expected to be linear in a. Figure 2
shows a linear fit of our data for m~/mp to the rho mass,
at physical quark mass, measured in lattice units, mrna.
The horizontal axis may also be interpreted as the lattice
spacing a measured in units of I/m~. The vertical bar
at mpa of 0 is the extrapolated prediction's uncertainty,
determined by the bootstrap method. The dot at m~a of

0 is the experimental value of m~/mp. The three data
points in Fig. 2 are for the lattices 16 x 32, 24 x 36,
and 30 x 322 x 40. The values of P for these lattices
were chosen so that the physical volume in each case is
nearly the same. For lattice period L, the quantity m&L
is, respectively, 9.08 + 0.13, 9.24 + 0.19, and, averaged
over three directions, 8.67 + 0.12.

The continuum ratios we found in finite volume were
then extrapolated to infinite volume. This was done by
using the differences between mass ratios found on the
lattice 16 x 32, at P of 5.7, and mass ratios found on the
lattice 24s x 32, at P of 5.7, as finite lattice spacing ap-
proximations to the differences between continuum mass
ratios in a box with period having m~L of 9 and con-
tinuum mass ratios in infinite volume. The error in this
procedure can be estimated to be about i%% as follows.
All of the finite volume extrapolated zero lattice spacing
mass ratios which we obtained were within 20%%uo of their
values on the lattice 16s x 32 at P of 5.7. Moreover, as
we argued earlier, the changes in masses we found, at P
of 5.7, between 16s x 32 and 24s x 32 should be nearly
the same as corresponding changes between 163 x 32 and
inifinite volume. Combining these two pieces of informa-
tion, we expect that with a relative error of 20% or less,
the changes we found in mass ratios between 16 x 32 and
24s x 32 at P of 5.7 should be the same as the changes be-
tween continuum mass ratios in a box with period having
m~L of 9 and corresponding continuum ratios in infinite
volume. Since the changes we found in mass ratios, ex-
trapolated to physical quark mass, between 16 x 32 and
24s x 32 are all less than 5%, the overall error in using
these differences as estimates of corresponding continuum
differences between m~L of 9 and infinite volume should
be of the order of 20% of 5%, which is 1%.

Eight different hadron mass ratios, extrapolated to
zero lattice spacing with m~L fixed at 9, and then ex-
trapolated to infinite volume are shown in Table III. All
eight infinite volume continuum predictions differ from
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Ratio Finite volume Infinite volume Observed

77k~~ 77lp

m@ flap
77l Q mp
Am/mp
m~/mp
mg+ mp
m~ + rnp

mQ f0p

1.149+0.010
1.297+0,019
1.285+0,070
1.867+0.046
1.628+0.075
1.813+0.051
2.013+0.052
2.206+0.058
0.305+0.008

1,167+0.016
1.333+0.032
1.219+0.105
1.930+0.073
1.595+0.111
1.821+0.075
2.063+0.067
2.298+0.098
0.319+0.012

1.164
1,327
1.222
2.047
1.604
1.803
1,996
2.177
0.305 + 0.018
0.320 + 0.007

TABLE III. Calculated values of hadron mass ratios at
physical quark masses, extrapolated to zero lattice spacing
in finite volume, then corrected to infinite volume, compared
with observed values, and with calculations of Refs. [3, 5] for
A /m~. The mass difFerence Am is m= + mr. —mdiv.

masses depend linearly on quark mass.
Values of A, determined following Ref. [3], give(o)

A /m~ which vary by only 1 standard deviation over
the three lattices used for extrapolation. Thus the rho

mass follows asymptotic scaling in g . The contin-

uum and infinite volume continuum limits of A~ /mz are

shown in Table III. For the observed value of A /m~
"' {0)'

we have inserted the calculated results of Refs. [3, 5].
The authors are grateful to Mike Cassera and Dave

George for their work in putting GF11 into operation, to
Chi Chai Huang, of Compunetix Inc. , for his contribu-
tions to bringing GI ll up to full power and to its con-
tinued maintenance, and to Ed Nowicki and Molly Elliot
for their work on GF11's disk software.

experiment by less than 6% and less than 1.6 standard de-
viations, The central values of the infinite volume ratios
shown in Table III are marginally closer to experiment
than the finite volume ratios. We believe the main signif-
icance of the infinite volume numbers shown in Table III,
however, is that their error bars include the uncertainty
in estimating infinite volume ratios from finite volume.
Variations of our mass fitting procedure which decrease
some of the volume dependence shown in Table II do not
produce statistically significant changes in the numbers
shown in Table III. The errors on all quantities in this
table were found by the bootstrap method.

Of the eight hadron mass ratios in Table III, the val-
ues of mc, /m~, miv/m~, (m=+ mg —mt')/m~, m~/m~,
and mri/m~ may be viewed as entirely independent pre-
dictions. The predicted values of m~. /m~, m~*/m~,
and m=. /m~, on the other hand, are the infinite volume,
continuum limits of ratios obtained by combining linear
fits to hadron masses as a function of quark mass with
our version of the Gell-Mann-Okubo mass formula. The
agreement of these values with experiment may be viewed
as confirmation of our prediction that low-lying hadron
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