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Using recent advances in the understanding of noncritical strings, we construct a unique, conformally
invariant continuation to oA-shell momenta of Polyakov amplitudes in critical string theory. Three-point
amplitudes are explicitly calculated. These off-shell amplitudes possess some unusual, apparently strin-

gy, characteristics, which are unlikely to be reproduced in a string field theory. Thus our results may be
an indication that some fundamentally new formulation, other than string field theory, will be required
to extend our understanding of critical strings beyond the Polyakov path integral.

PACS numbers: 11.17.+y

Off-shell amplitudes are of great physical interest for
string theories, as they are for field theories. They are
essential for the derivation of eA'ective actions, e.g. , the
derivation of effective potentials for particles such as the
tachyon and the dilaton, for the derivation of measures
for integrating over moduli of space-time instantons in

string theory [1],and for the calculation of hadronic form
factors when one attempts to interpret certain aspects of
quantum chromodynamics in terms of effective string
theories. The purpose of the present Letter is to show
that there is a unique continuation of Polyakov scattering
amplitudes [2] to off-shell momenta, and that recent ad-
vances in noncritical string theories [3-5] have rendered
computations of these oA-shell amplitudes practicable.

In string theory despite intensive investigations in the
past, off-shell amplitudes have proven to possess a re-
markable intransigence. Space does not permit an ex-
tended discussion of previous work here [6], but we pro-
vide a summary to put our work in perspective.

(1) The first attempts [7] gave integral formulas for
oA-shell extensions of the Veneziano amplitude that
obeyed various physical criteria such as crossing symme-
try, vector dominance of form factors, Regge behavior,
and current conservation.

(2) String field theories (SFTs) [8] naturally provide
oA-shell extensions. Such extensions are not dual, since
SFT amplitudes are sums of Feynman diagrams con-
structed from certain building blocks of fixed geometry,
and independence from the conformal frame of these
building blocks holds only when all external legs are on-
shell. Thus, off-shell SFT amplitudes are not "stringy, "
and often possess spurious singularities. SFT is an
economical way of extending a first-quantized under-
standing of strings, and the fact that such an extension
does not exhibit stringy properties off-shell is no reason
for immediate derogation.

(3) Bardakgi and Bardakgi and Halpern [9] considered
an oA-shell extension while investigating spontaneous

symmetry breaking in dual models. They introduced a

fictitious dimension, with momenta in this dimension re-
stricted to + 1. This enabled them to preserve conformal
invariance while computing tachyon amplitudes at zero
space-time momentum. It will be evident in the following
that this work comes closest to the approach based on the
Polyakov functional integral [2] (defined below) that we

pursue here.
(4) Since Polyakov's work [2], attempts have been

made to compute amplitudes on surfaces with boundaries,
with oA'-shell external states specified as matter config-
urations on the boundaries. Some of this work [10] uses
known mathematical results for surfaces with a reflection
symmetry, treating surfaces with boundaries in terms of
their "double" surfaces, with the boundaries as the curves
left invariant under the reflection symmetry. The imposi-
tion of physical boundary data, which is naturally in-

dependent of the parametrization of the surface, is not
treated in these works. Another approach [11] attempted
to compute the functional integral directly for a cylinder,
but neglected the Weyl dependence in the integration
over reparametrization of boundary data. It might be
supposed that the pointlike states considered in Ref. [11]
should not sulTer from this problem [12].

A general feature of approaches (l)-(3) mentioned
above is the problem of maintaining oA-shell conformal
invariance. Recall that Polyakov's derivation of the con-
nection between conformal anomalies and the critical di-
mensions of string theories [2] elucidated a multitude of
features of string physics, gleaned piecemeal in pioneer-
ing work. Polyakov's framework proved to provide the
foundation for most advances in our understanding of
string theories which have followed. It is natural then to
suppose that this approach should have something to say
about the off-shell properties of string theory. This is

indeed the case, as we shall show, Using recent advances
in noncritical string theories [3-51, we explicitly calculate
an oA'-shell three-point function. We also compute a
tree-level eAective action for the tachyon of bosonic string
theory.
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Within Polyakov s approach, space-time scattering amplitudes of string excitations are calculated as correlation func-
tions of vertex operators in a functional integral over the metric on the string world sheet, and the space-time string
configurations [13]:

d'z Jg V(z) =— . exp( —S[gX])Q d'z&gv(z) .

The measure is divided by the "volume" of the symmetries of the classical action 5—:(8x) ' f d z Jgg' tl, X BbX„,
with p =1, . . . , D—namely, diffeomorphisms and local Weyl rescalings on the world sheet. Choosing conformal gauge,
g, b

=—e g,g(m), and fixing diffeomorphisms a la Faddeev-Popov, these functional integrals reduce to

r

exp( —S[g,X])QJ d'z;dg(m) V;(z;) .
vol Weyl vol CKV

Here, CKV stands for the conformal Killing vectors that
must be taken into account if the world sheet is a sphere
or a torus, and dm denotes the measure for integrating
over moduli labeling distinct con formal equivalence
classes of metrics on surfaces with one or more handles.
Equations (I ) and (2) are actually only equivalent if
Weyl rescaling survives as a symmetry of the quantum
path integral. This requires that D =26 in order to can-
cel the anomalous dependences on the Weyl field p in the
measure factor DXDetpp/vol(CKV) [2]. Also, one must
impose various space time m-ass-shell and polarization/
gauge conditions on the external string states to avoid any
anomalous Weyl dependences from normal-ordering the
vertex operators. Combined these restrictions ensure that
p completely decouples from on-shell correlation func-
tions in critical string theory. Then the integration over
the Weyl factor cancels against the volume of the group
of Weyl rescalings in the denominator [i.e. , f Dp/
vol (Weyl) = I ].

Therefore mass-shell conditions are obtained from re-
quiring Weyl invariance. It follows in the Polyakov ap-
proach that the calculation of amplitudes for off shell-
string states requires the ability to compute correlation
functions of vertex operators with an anomalous Weyl
dependence in the normalized measure Dhoti/vol(Weyl).
One may ask why performing these calculations is such a
daunting task. The problem resides in the nonlinearity of
the Riemannian metric that defines Dhoti The full metric.
g,b is used to define the norm on infinitesimal changes in

the conformal factor

D& =DO/exp SL —— d ze'~
z ~ (3)

where SL —=f d z/(6z) [t)&8&+ 4 g
'

Rishi] and p is the

fO

(6P, 6P) = d xJg (BP) =„d xg ' e ~(6P)

which then explicitly depends on p. Treating the func-
tional integral over p as a standard quantum field theory
requires a translation invariant measure Dog, defined by
the norm, (8$,6&)o=Id xg' (6p) . As shown by Mav-
romatos and Miramontes, and, independently, D'Hoker
and Kurzepa [51, these two measures are related in a re-
markably simple way,

"cosmological constant. " The latter coeScien t rem a ins

undetermined by their computation, but a is explicitly
fixed (see below). This relation was originally conjec-
tured [4] in the study of two-dimensional gravity coupled
to conformal matter in conformal gauge. It is important
to note that the derivation of Eq. (3) is mathematically
entirely independent of the rest of the functional integrals
involved. I t is valid in noncritical string theory, and
equally valid in the context of critical string theory.

The only assumption in the present work will be in

treating the correlation functions using the methods of
conformal field theory. For noncritical strings, this ap-
proach has been verified by comparison with the results of
matrix model techniques. The stress tensor deduced from
Sl. is Tl. = —,

' [(8&) —t) p], and it is easily checked that
the central charge eq =0. Thus the total central charge
(for matter, ghosts and, now, Liouville field) remains
zero. The weight of' an exponential operator e is
—', P(P+ —,

' ). OIT-shell vertex operators V, of weight

(A, A) are dressed the same way as matter operators in

noncritical string theories to produce (1,1) operators
exp(Pqg) V; with

P, = —,
' [425 —24~ —I]. (4)

This is the unique solution for p& such that 6=1 p&=0,
which insures that in the on-shell limit, these off-shell
amplitudes reduce precisely to the usual on-shell ampli-
tudes. Rather puzzling is the nonanalyticity in this
prescription at 3, = 24, since there is no obvious physical
reason to restrict h, ~ &4. While one expects cuts in loop
amplitudes in field theories, it seems di%cult to interpret
this nonanalyticity as arising from similar physics. A
better understanding is certainly required to extend the
applicability of our approach, but for the present, we will

restrict our attention to 6 ~ 24.
The presence of the cosmological constant in Eq. (3) is

important for defining the integration over p. Insertions
of cosmological constant interaction "cance1" Liouvi1le
momentum carried by the off-shell vertex operators, and
the background charge term in Sl. However, the treat-
ment of the complete action is rather subtle [14,15].
Here, treating the cosmological constant term as a per-
turbatively defined interaction, we determine a =p&=0

2842



VOLUME 70, NUMBER 19 PHYSICAL REVIEW LETTERS 10 MAY 1993

One could consider the other branch of the square
root, which gives a= —1, but a=

3 may be preferred
since then this interaction can be interpreted as a zero-
momentum tachyon, hence as obtained from the off-shell
continuation of a physical state. Also if used as the area
operator of the quantum theory, a vanishing area results
in the limit p

—~, in accord with classical expecta-

tions.
Explicit computations can be performed on the two-

sphere, using the ideas of Goulian and Li [14] to perform
the integral over the constant zero-mode, &0. The classic
calculation of Dotsenko and Fateev [16] can then be used
to compute the resulting correlation function, with ap-
propriate analytic continuations along the way [14]. The
zero-mode integral is

d&0exp( —,
'

&0
—Ce ')exp(@&0) =

2 1 ( —,
' (3@+1))C

where y=—ZP;—:PP(A;), and C—:(pie) jd z exp( —,
' P), with j d z &=0. The (not yet normalized) amplitude is now

( t d; ' v, (, ) =-,'r( —)Q d z; C'Q "(,) Qv, (, )
m

i =0 k=0

Here A(z) =1 (z)/1 (1 —z), and we have defined PD
= ——,', but y=g;=~P;. Using the ideas of Ref. [14], the
above formula can be continued to the following expres-
sions:

3 y- 2/3

( —', )' '"Q Q a(1 —3P;+ —, p)
i =0 p=O

i=0
3

or x ( —,')"+' Q 4(2P; —y)a(2P; —
y

——', )
i=0

y+Z/3
x Q A(1 —3P + —'p),

p=0
(5)

where y must be such that the upper limits of the prod-
ucts are integers. Combining all of these formulas, we
have results which are valid for y=n/3 where n is a posi-
tive integer or zero. A more extensive description of the
analytic continuations above will appear elsewhere [6].
Analytic continuations similar to those in Eq. (5) were
proven to hold for noncritical string theory by Aoki and
D'Hoker [17].

It is useful to investigate the analytic structure of these
amplitudes when y is held fixed. Considering the ratio of
two such amplitudes (with the same values of y), one
finds that the interesting dependence on P; resides in, e.g. ,

p=0

where s= ——,
' (3@+1), and the subscript I (m) stands

tor Liouville (matter) expectation values. For three-point
functions and positive integer values of s, these correla-
tions were treated by Dotsenko and Fateev [16]. Choos-
ing three tachyon operators, V~ =exp(ikfX„), and fixing
their positions [z~, zz, z3] at [0,~, 1], yields

3 s —]

One finds poles and zeros depending on the value of P; in-

dividually, and y as well. Note that the restriction which
arose in the discussion of the dressings, h, ~ 24, also con-
strains P; ~ —

—,
'

. For a fixed y, this restricts the number
of poles and zeros which actually occur. A case of in-
terest because the particles can all go on-shell is @=0,
where we find Q;=~ d (1 —3P;)h(2P;). This expression
has poles where P; —,

' (i.e., k, 3 ), and no zeros—in particular, it remains finite as P; 0. A striking
feature of' the amplitudes is the presence of poles that are
not accounted for by excitations in the matter sector
(even if combined with the ghost sector). They may indi-
cate the presence of excitations that are entirely stringy
in nature.

Independent of the existence of new poles, the fact that
the amplitudes have products which have upper limits
determined by y is something entirely unlike the ampli-
tudes one obtains from a field theory. In field theories,
the off-shell character of the amplitude is a function of
individual external states. Here, one can obtain the value
y=0 when all external states are on-shell, or if they are
off-shell. It is dificult to imagine how this y dependence
could be reproduced in a string field theory. Thus our re-
sults may be an indication that some fundamentally new
framework, other than string field theory, will be required
to extend our understanding of critical string theory
beyond the Polyakov path integral. Of course, even
though our present knowledge of string theory is derived
almost entirely from the Polyakov functional integral, it
is not possible to exclude the possibility that the Polyakov
approach is just a recipe for on-shell calculations.

An important feature which distinguishes our am-
plitudes from those of noncritical string is the factor
vol(Weyl) in the denominator of Eq. (2). The computa-
tion of the Weyl volume is subtle. Reference [14] gives a
prescription which uses Eq. (5) with y=2 and P; = —', to
give a result for the two-sphere (which actually vanishes).
At tree level it is possible to evade a direct computation
of the Weyl volume by considering ratios of amplitudes.
On higher genus surfaces, the presence of this factor en-
sures that the Weyl field does not show up in any count-
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ing of states via degenerations. In particular, the depen-
dence on the moduli in Dp is precisely canceled by the
denominator, unless there are off-shell vertex operators
present. Note then that in Eq. (2), dm and DP/
vol(Weyl) must be explicitly ordered as given.

In conclusion, we have shown in this Letter that the
effort expended on the study of noncritical strings in

somewhat unphysical contexts has important physical
consequences in critical string theories. It follows as well

that any new future insights into noncritical string phys-
ics, or into quantum Liouville theory, will translate
directly into further insights into off-shell critical string
physics. There are a great many physical questions that
become accessible in our approach to off-shell string
physics. Above we have only considered simple exponen-
tial dressings, but one can also find many new (1,1) pri-
mary fields with oscillator contributions (e.g. , r)p) which
will couple in amplitudes. Some of these may account for
longitudinal polarizations which only couple off-shell. It
is possible to derive explicit formulas for four-point func-
tions with mild kinematic restrictions, and of course, a su-

persymmetric extension of these ideas is immediate. Ex-
tending Eq. (5) to arbitrary values of y is required, as is

an understanding of the nonanalyticity in Eq. (4). The
calculation of the effective action requires care. Compu-
tations for zero-momentum tachyons do not contain ex-
pected dilation exchange singularities, and yield a nonan-

a/@tie tree-level effective potential,

I (T)—3T'i —T.
An extended treatment of these issues is in preparation
[6].
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