
VOLUME 70, NUMBER 19 PHYSICAL REVIEW LETTERS

Black Strings and p-Branes are Unstable
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We investigate the evolution of small perturbations around black strings and branes which are low en-

ergy solutions of string theory. For simplicity we focus attention on the zero charge case and show that
there are unstable modes for a range of time frequency and wavelength in the extra 10 —0 dimensions.
These perturbations can be stabilized if the extra dimensions are compactified to a scale smaller than the
minimum wavelength for which instability occurs and thus will not affect large astrophysical black holes
in four dimensions. We comment on the implications of this result for the cosmic censorship hypothesis.

PACS numbers: 97.60.Lf, 04.20.Jb, 04.60.+n, 11.17.+y

Black holes are perhaps the most puzzling objects in

general relativity. They hide behind their horizon a
singularity: a point which implies the demise of the
theory itself. The area surrounding this singularity is a
region of extremely strong gravity, and presumably is de-
scribed by quantum gravity. In four spacetime dimen-
sions black holes are stable: Once formed they settle
down to a state described solely by their mass, charge,
and angular momentum; therefore the singularities re-
main hidden from distant observers. This classical stabil-
ity of black holes led to Penrose's cosmic censorship hy-
pothesis [1] claiming that all singularities are hidden.
Quantum mechanically, black holes are quite different
objects; they are analogous to a thermal system. The sur-
face area of the hole behaves like entropy, and it is even
possible to associate a temperature to a black hole, as
Hawking has shown they radiate thermally [2]. Howev-
er, Hawking conjectured [3] that a black hole formed
from a pure quantum state would radiate away, leaving a
mixed state of radiation; this would violate quantum
mechanical unitarity. It is difficult to understand the
final stage of black hole evaporation as general relativity
is expected to break down at Planckian curvatures, but if
quantum gravity preserves unitarity and information is to
be returned, it must do so well before the black hole
reaches Planckian curvatures, otherwise there is simply
not enough energy left in a Planck-mass black hole to
emit all the information stored in a macroscopic black
hole.

Recently, there has been a resurgence of interest in this
problem, largely due to the rise of string theory as a can-
didate for this unified quantum theory. Many efforts
have concentrated on the weak gravity regime, analyzing
the implications of low energy string theory on black
hole structure. Already some of these discoveries have
been exciting. In Einstein gravity, charged black holes
(the Reissner-Nordstrom solutions) have an unfortunate
weakness. As well as an outer event horizon, they contain
an inner Cauchy horizon which is unstable to matter per-
turbations in the exterior spacetime [4]. However, there

is no static charged black hole solution in Einstein gravity
with only one horizon and a spacelike singularity. On the
other hand, in low energy string theory, gravity acquires
a dilaton which greatly changes the causal structure of
charged black holes making them Schwarzschild type
with one event horizon and a spacelike singularity [5].
This structure is generic, even if the dilaton has a mass
[6], as it must do to keep in line with the principle of
equivalence. A particularly amusing aspect of these
black holes is that in the extremal limit of a magnetically
charged black hole, the spacetime acquires an internal
null infinity at "r =2M" which is an infinite volume
"throat" in which much information can be stored.

Of' course, all of these models live in low dimensions,
whereas string theory tells us there are ten dimensions.
Ideally therefore, one should be examining black holes in

ten dimensions. There has been work on black holes in

higher dimensions [7], including work that allows for a

range of horizon topologies [8]. In four dimensions, an
event horizon must be topologically spherical [9], but in

higher dimensions this is not necessarily the case; we

could have 5 xP or P xH topologies for the horizon.
The purpose of this Letter is to point out that a large
class of these black holes are unstable under small pertur-
bations. This is a property which is very different from
their analog in four dimensions. However, there is a
heuristic argument to show that this is reasonable. Con-
sider a five-dimensional black string, SchxlR. A portion
of length I has mass AL =MI and entropy proportional to
At /I Afive-dimensi. onal black hole, on the other hand,
has entropy proportional to Af . Thus for large lengths
of horizon, the mass contained within the horizon contrib-
utes a much lower entropy than if it were in a hyper-
spherical black hole. This indicates that for large wave-

length perturbations in the fifth dimension, we might ex-
pect an instability.

The issue of the stability of the five-dimensional black
string has been investigated analytically [10] with the re-
sult that there is no nonsingular single unstable mode on

a Schwarzschild time t =0 surface; however, this argu-

1993 The American Physical Society 2837



VOLUME 70, NUMBER 19 PH YSICAL REVIEW LETTERS 10 MA+ 1993

where V= I
—(r+/r), D =4, . . . , 10 and the index i

runs from 1 to 10—D. As we are only addressing un-

charged black holes here, it is sufhcient to consider per-
turbations to the Einstein equations, since the dilaton and
gauge perturbations decouple and can be set to zero. In
the usual fashion we write a perturbation of the metric as

gab gab + ~ab ~

where we use the transverse trace-free (de Donder) gauge
fOr h.b

h'=0=5' (3)

ment did not prove stability. As emphasized by Vish-
veshwara [I I] in his original Schwarzschild stability ar-
gument, the nonexistence of a single unstable mode does
not preclude the existence of a composite unstable mode,
with the combination canceling the singular behavior of
an inadmissable single singular mode. This is in fact the
situation with the colored black hole instability, recently
confirmed by Bizon and Wald [12]. That this is indeed
the situation for black strings was first indicated by Whitt
[13], who analyzed four-dimensional fourth order gravity
and found an instability —a different physical situation,
but mathematically identical equations to those studied in

Ref. [10]. The key simplification Whitt found useful was
to use a different initial data surface ending on the future
horizon. By avoiding the neck of the Schwarzschild
wormhole, one avoids the fixed point of the isometrics
used to generate the mode decomposition, which avoids in

this case issues of superposition. By adapting and gen-
eralizing his approach, we have been able to show that
extended uncharged black p-branes are unstable. It is

~orth stressing that this instability is not of the Reiss-
ner-Nordstrom f'orm —hidden behind the event horizon—but it is a real physica/ instability of' the exterior
spacetime which could potentially fragment the horizon.
It is important to emphasize that this can occur classical-
ly, for although under regular conditions horizons do not
bifurcate [14], if one has a naked singularity, then bifur-
cation is possible. Since an instability calculation is by its
nature linear, it cannot predict the end point of an unsta-
ble evolution. However, the entropy argument does lend

support to the fragmentation scenario and violation of the
cosm ic censors h ip hypot hesis.

In order to prove linear instability, an analysis of the
perturbation equations is required, with suitable reference
to gauge and boundary conditions. Although this process
is quite detailed and involved, it is nonetheless possible to
present the salient features of the argument briefly. This
is what we will now do.

The black branes we are specifically interested in are
those introduced by Horowitz and Strominger in ten-
dimensional low energy string theory with a metric of the
form

ds = —V dt +—dr +r d A~ 2+dx'dx;,1

This does not eliminate all of the gauge freedom, but does
si mpl i fy the perturbation equations

A( hab = (grab + 2R, 'b )h,d =0, (4)

where hq stands for the Lichnerowicz operator.
In general relativity, physics is invariant under general

coordinate transformations (GCT's), which are generated
by vector fields g'. The elfect of an infinitesimal GCT is

to push the coordinates b along the integral curves of g'.
Under such a gauge transformation, the metric trans-
forms as

h(ab = 2((a b)

But if g' is divergence free and harmonic, then h~ satisfies
both (3) and (4). Therefore, although there are (iV
—2)(IV+1)/2 degrees of freedom in the solutions to the
W-dimensional Lichnerowicz equation, % —

1 of these are
pure gauge, the remaining N(N —3)/2 being physical. It
will turn out to be fairly straightforward to identify the
gauge degrees of freedom.

Now, most importantly, there is the question of bound-

ary conditions, which are the key to this problem. Obvi-
ously, we want to place initial data on a Cauchy surface
for the exterior spacetime, but such a surface necessarily
touches the horizon, which is singular in Schwarzschild
coordinates. There are therefore two issues here: One is

how to define "small" for the perturbation at the horizon,
and second, which initial data surface to impose these
constraints upon.

The first issue is straightforwardly dealt with. Al-

though the horizon is singular in Schwarzschild coordi-
nates, it is not a physical singularity, merely a coordinate
singularity. In four dimensions, nonsingular coordinates
have been known for some time —Kruskal coordinates.
These require generalizing to higher dimensions, which is

slightly more involved, but the transformation laws be-
tween Kruskal and Schwarzschild coordinates remain
qualitatively the same at the horizon. Therefore, since
Kruskal coordinates do not display their staticity in a
straightforward manner, we perform a mode decomposi-
tion in Schwarzschild coordinates, transforming to Krus-
kal coordinates at the horizon to decide which modes are
well behaved.

This leaves us with the problem of an initial data sur-
face. The domain of dependence must obviously include
J'+; thus a surface touching the future horizon, or the
neck of the Schwarzschild wormhole, is acceptable, but a
surf'ace touching the past horizon is not, unless it passes
through and extends to the opposite horizon on the Pen-
rose diagram. We choose the data surface ending on the
future horizon for two reasons. One is that it avoids the
issue of mode superposition discussed earlier, and second,

gab gab+ 24(a;b) i

hence a pure gauge perturbation of the metric is of the
form
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we believe it to be a better physically motivated choice of
surface. This is because in practice a black hole (or
brane) would 1'orm in a collapse situation, and hence
would not have a Schwarzschild wormhole; analyzing the
stability would necessarily require a surface ending on a
future event horizon.

Now we turn to the actual stability analysis: Are there
any unstable modes'? As a result of the symmetries of the
spacetime, we can split up the perturbation into a purely
transverse piece, a mixed transverse and D-Schwarzschild
piece, and a purely Schwarzschild piece. This can be rep-
resented schematically as

h"' =0 =h'J

H lt 0(I

~ ll' ~ 1'I'

hPv 01 Pi- 0 0

0

0

0
0
0 (8)

0 0 0
K

sin 0

for certain values of 0 and Zp;, a solution to the
Lichnerowicz equation exists.

Using the metric (1) and the perturbation in the form
(8) the Lichnerowicz equation reduces to

hp, h„;
h Jv AIJ

Ap+ g pl /ip~ =0, (9)

where p runs from 1 to D. In a Kaluza-Klein spirit, we
can interpret these perturbations as scalar, vector, and
tensor, respectively, with respect to the D-dimensional
Schwarzschild spacetime.

It is relatively straightforward to show that there are
no unstable modes with nonzero scalar or vector pieces
meeting our criteria of being well behaved at both infinity
and the future event horizon. However, for a D-
dimensional s wave of the form

(D —3) '(r /r)"
0 ~2 2V+ + ~Ir"

4r

where hl is the D-dimensional Lichnerowicz operator.
Note that a pure D-dimensional gauge perturbation,
h„„=(&„.,&, satisfies h/ („,=0. Thus a pure gauge per-
turbation of the metric must be a zero mode of the D-
dimensional Lichnerowicz equation. Therefore as long as

p =P;p; &0 in Eq. (9), h„„will be a real physical per-
turbation.

To find the equation obeyed by the perturbation we use
the gauge conditions to eliminate all but one variable
from the Lichnerowicz equation, H'", say, leaving a
second order ordinary diAerential equation:

p D —2 —22 r+
r

' D —3 2(D —3)-

+ (4 —D) + 0 [(D —2) + (2D —7) (r ~/r ) ]
rV

0 [4(D —2) —8 (D —2) (r+/r) —(53 —34D+ 5D ) (r+/r ) 3]l+ p + +
V 4 2V2

p [4(D —2) —4(3D —7)(r+/r) +(D +2D —11)(r+/r) ]

4r V

(D —3) (r+/r) [(D —2)(2D —5) —(D —1)(D—2)(r+/r) +(r+/r) ]

4r V
(10)

By inspection of this equation, the regular solution at
(O 2+ 2) 1/2p

infinity is e "', and the solutions at the horizon—1+ r n/(D —3)behave as (r —r ~ ) + . Our boundary condi-
tions demand the positive root and 0 & 0. For
0 ) (D —3)/r+ and any value of p, we can rule out the
existence of' instabilities analytically. Unfortunately it is

exactly when 0 is of the order of 1/r+ that we expect a
possible instability. For small A and p; we can confirm
the existence of regular unstable solutions numerically.
Obviously because the horizon is singular this process is

delicate; however, if we integrate in a regular solution
from infinity, the general solution near the horizon will be

( ) ( )
—1+r~n/(D —3)

By taking appropriate combinations of this function and
its derivative, we determine the ratio R =A -/A+. Ex-
istence of a solution (and hence an instability) is deter-
mined by a zero of R. We observe this in practice by a
change in sign of R, for which R decreases as we home in

on the sign change. An increase in R would indicate a
zero of 8+. We found that there did indeed exist zeros
of R for a range of 0, for all 4 ~ D ~ 9, with appropriate
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FIG. l. Plot of 0 as a function of p for black strings and
branes with D =4, . . . , 9 for which an instability has been
found. The bold points correspond to values calculated numeri-
cally and the lines have been traced to guide the eye.

values of p shown in Fig. 1. The points in Fig. 1 corre-
spond to the values calculated numerically and the lines
have been added to guide the eye. There is a symmetry
in the equation for H" under the following transforma-
tion: r+ ar~, 11 11/a, and p p/a, for a constant
value of a. Thus it is suScient to calculate fl and p for
only one value of r+.

The significance of these results is easily summarized:
Black strings and branes are classically unstable. This is

a real instability, for clearly the perturbation cannot be
written as pure gauge. By exhibiting a single (A, p) for
any black brane we prove instability, and by exhibiting a
range we indicate the instability is generic and robust.
How might we interpret this result physically'? Of
course, since our calculation is linear, we cannot strictly
say anything about the final state, but the entropy argu-
ment, as well as the fact that h, g dominates g,b in

Schwarzschild coordinates near the horizon, makes it
tempting to suggest that the black brane will fragment.
Periodic black hole solutions are known [15], so there is
a known final state solution in this case (unlike the
Reissner-Nordstrom case). Such a process will produce a
naked singularity and hence violate cosmic censorship.
Perhaps a more realistic though less spectacular con-
clusion is that due to this instability, black strings and p-
branes will not form in the first place from collapse.

The only way around the instability is to compactify
the transverse dimensions on a scale smaller than the in-
verse mass of the black hole. The compactification would
imply that the values of p; are quantized. If their first
value is greater than the maximum one in Fig. 2 this
would imply that such "black doughnuts'" would be
stable. Since there must be compactification of any extra
dimensions on an extremely small scale, all but the tiniest
black doughnuts would be safe, and those that would not
would presumably have evaporated producing their own
naked singularities long ago. Thus this instability will
have no effect for contemporary astrophysical black holes.

Naturally this work makes no statement about classi-
cally charged black holes. An investigation into these is

in progress. Although the true end point of this instabili-
ty is not presently known, it would have important conse-
quences for the cosmic censorship hypothesis. The form
of 6'g, b indicates that these perturbations add an oscilla-
tory component to the location of the horizon as a func-
tion of x; (the extra dimensions). If these instabilities
lead to a shrinking of the event horizon, black hole singu-
larities might reveal themselves. A generic regular initial
perturbation would therefore develop into a visible singu-
larity. The extremal case, where the event horizon and
singularity coincide, is of particular interest. If the event
horizon shrinks, even by a very small amount, this insta-
bility may lead directly to a naked singularity. This case
is under present investigation.

Finally, to reiterate our original theme, this result
makes clear the domain of validity of four-dimensional
Einstein gravity —namely, four-dimensional Einstein
gravity. The stability of four-dimensional Schwarzschild
black holes does not imply that five-dimensional black
strings or ten-dimensional black branes are stable—indeed they are not. The result highlights the unex-
pected subtleties of black holes, and is a demonstration
that an event horizon too can be ephemeral.
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