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Starting from an assumption of universality in turbulence and building upon the work in Y. G. Sinai
and V. Yakhot, Phys. Rev. Lett. 63, 1962 (1989), we construct a closed-form expression for the proba-
bility density function of temperature fluctuations. This result is found to be in good correspondence to
experimental data obtained at Chicago and Yale. By extending this method, we obtain a similar expres-
sion for the probability density function of temperature differences between two times. Again the result
is checked to hold very well, except for very short time separations.

PACS numbers: 47.27.—i, 02.50.—r, 05.40.+j

Probability density function (PDF) of fluctuations is of
increasing interest in turbulence. With a view to studying
possible corrections to Kolmogorov’s five-thirds law and
the related intermittency problem, a lot of experimental
[1] and numerical [2] data for derivatives and differences
of velocity and scalar fields have been accumulated. The
PDF’s of these quantities are found to be non-Gaussian.
Recent Chicago experiments [3] on Rayleigh-Bénard
convection in low-temperature helium gas revealed that
there are two qualitatively different turbulent states. In
the soft-turbulence regime [Rayleigh number (Ra)
< 103], the PDF of temperature fluctuations measured at
the center of the experimental cell is Gaussian, while in
the hard-turbulence regime (Ra > 108), the PDF is non-
Gaussian and close to exponential (sometimes high-pass
filtering [4] is required to get the exponential). The
PDF’s of temperature differences, between two different
times, were also studied [5] and found to be quite well ap-
proximated by a stretched exponential: e —elxl? " The
values of B become smaller towards shorter time separa-
tions.

The discovery of nearly exponential temperature fluc-
tuations in convection has stimulated some recent theo-
retical [6-10] and experimental [11,12] studies on PDF’s.
The diffusion of a temperature field, 7(x,z), which simul-
taneously undergoes advection in an incompressible veloc-
ity field, u(x,z), is described by the following equation:

OT T =xVT,
ot

1)
V-u=0,

with « being the thermal diffusivity. Equation (1) is val-
id when temperature acts as a passive scalar as well as
in thermal convection in which temperature difference
drives the flow. In the latter case, there is another equa-
tion, the Boussinesq equation [13], which couples the ve-
locity and the temperature fields. From Eq. (1), Sinai
and Yakhot [6] derived a “‘fluctuation-dissipation” rela-
tion for the case when the system is homogeneous and the
temperature field is not forced:

(Xy=0Qn—1){X?""2y?%) )
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Here X =(T —(T))/(T —(T))®'? is the temperature
fluctuation normalized by its own standard deviation and
Y=VT/{(VT)®)'? is the normalized temperature gra-
dient. Their analyses are thus not directly applicable in
the case of thermal convection when the system is forced
(a nonzero temperature difference is maintained) nor
even when temperature is passive as external heat is sup-
plied to maintain the fluctuations for measurements. Us-
ing Eq. (2), Sinai and Yakhot obtained a closed form for
the asymptotic PDF of the decaying temperature fluctua-
tions in homogeneous systems.

In this paper, we assume that a fluctuation-dissipation
relation similar to Eq. (2) holds in general for turbulent
temperature fluctuations, namely,

XM =02n—1){Xx?""2y?), 3)

where ¥ =(37/8¢)/((dT/3¢)*)'"? is the normalized tem-
perature derivative. (The variables Y and Y have similar
statistics when a mean flow exists and Taylor’s frozen
flow hypothesis [14] is valid [15].) The use of Eq. (3) in
situations where the system is forced is not obvious and
might be justified by considerations of universality of
fluctuations in turbulence. Then following Sinai and
Yakhot [6], we obtain a closed-form expression for the
PDF of X, denoted as P(x). The expression depends only
on one quantity, g (x), which is defined by

()= SOT/0D) Dxms
T =" @eT/enD

The subscripts X =x indicate that the mean square is to
be calculated at a given value, x, of the normalized tem-
perature fluctuation X. Our result is

C * x'dx'
q(x) j:) q(x") ] ) 5)
The constant C is not arbitrary but fixed by the definition
of PDF: [P(x)dx=1. Note that Eq. (5) explicitly re-
lates the PDF of temperature fluctuations to the statistics
of temperature derivative.

Equation (5) can be tested with the Chicago convective
turbulence data [3]. We compute the PDF and g directly
from the temperature data taken at the center of the ex-

4)

P(x)=

exp
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perimental cell. Then we compare the PDF directly from
the data, which we denote as Pexp, with the PDF obtained
from g using Eq. (5), which we denote as Py, Figure 1
shows one such comparison for Ra=5.8 x 10", which is
in the hard-turbulence regime. We see that Pesp and Py
agree very well. The bigger fluctuation of Py,(x) for
large |x| reflects the larger statistical error of g(x) there
(due to fewer observations of large |x|). To measure
how good the agreement is, we define a quantity n by

y= | JA20PS x 1 (6a)
JPi2dx ’
where
Pth(x)
=] —_—.
A(x) =log, chp(x)} (6b)

The weight factor P}2 is included in the definition of 7 to
take into account the statistical error in computing Pqp,.
A plot of A(x) is shown in the inset of Fig. 1. In Table I,
we display the values of 7 for nine Ra’s which range from
107 to 10'5. It can be seen that good agreement is found,
in general, for both soft and hard turbulence, with Py,
and P always within a factor of 2 of each other
(n <1). Hence, Eq. (5) works well for the convective
turbulence data. We emphasize that this result is not a
simple generalization of Sinai and Yakhot’s work [6],
since their result is derived only in the case of decaying
temperature fluctuations. On the other hand, Yakhot [7]
obtained an expression different from Eq. (5) for PDF’s

o T -

In[P(x)]

FIG. 1. Testing the validity of Eq. (5) for the PDF of the
normalized temperature fluctuations, P(x), using convective
turbulence data with Ra=5.8x10'%. The solid line is the natu-
ral logarithm of Pexp, the PDF computed directly from the data.
The squares are P, the PDF obtained from g (x) using Eq. (5).
It can be seen that they agree well with each other. The inset is
A(x) [see Eq. (6b)], which is the logarithm (base 2) of the ratio
of the two PDF’s.
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TABLE 1. Values of n [see Eq. (6)] for PDF’s of tempera-
ture fluctuations and temperature differences. 7 is measured in
experimental sampling intervals. For those rows without a
value for 7, the data are for the PDF of temperature fluctua-
tions. The smaller the value of 7, the better Egs. (5) and (11)
can describe the experimental data.

Nature of data Ra/Re T n

6.9x10°% 0.26

2.1x107 0.30

6.0x108 0.44

4.0x10° 0.48

7.3x10'° 0.45

6.0x10"! 0.43

Convective 6.7x10'? 0.39
4.1x10" 0.36

(Fig. 1) 5.8x10' 0.33
6.0x108 1 0.82

[Fig. 2(a)] 7.3%10'0 1 0.79
7.3%10'0 8 0.35

[Fig. 2(b)] 7.3%10'0 64 0.30
7.3%10'0 512 0.27

5.8x10' 1 0.52

5.8x10" 8 0.26

5.8x10" 64 0.26

5.8x10' 512 0.18

9.5x10* 0.34

Passive 9.5%10* 1 0.58
9.5x10* 64 0.24

of stationary temperature fluctuations. However, his
derivation assumed a constant, nonzero gradient in the
mean temperature profile and is thus irrelevant for the
case of convection.

Using Eq. (5), we see that a difference between soft
and hard turbulence can be attributed to the different be-
haviors of g(x). Note that P(x) is Gaussian if g(x) is
independent of x [g(x) is then identical to 1, since
JP(x)q(x)dx =1 by definition]. On the other hand, if
q(x) ~x then P(x) is an exponential distribution. A pos-
sible way of getting g(x) increasing with x is to have a
spiky temperature time series. The spikes may be caused
by thermal plumes and other coherent structures ob-
served in flow visualizations [16]. This observation agrees
with the experimental demonstration by Solomon and
Gollub [17] that the form of the PDF’s depends heavily
on the coherence of plumes.

We then test Eq. (5) by using some temperature data
measured in the wake of a heated cylinder [18]. Water
of speed 5 m/s was flowed past a heated cylinder of diam-
eter 19 mm (Reynolds number, Re =9.5%104). Temper-
ature was measured at a fixed point downstream of the
cylinder on the wake centerline. The cylinder was heated
so slightly that the buoyancy term was unimportant and
temperature acted as a passive scalar. Good agreement
between Py, and Peyp is again found. The value of n for
this case is also given in Table I.
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Next, we extend the method of Sinai and Yakhot to
study the PDF’s of temperature differences, T.(x,t)
=T(x,t+1) —T(x,t), between two different times sep-
arated by a time interval . The equation of motion for
T, is

T,

a7 +u-VT,+u, VT =xV2T,,

@)
V-u=0.

Here, the subscript 7 denotes the difference of the quanti-
ty between times ¢+ 7 and ¢ while the overbar denotes
averages of the quantity between the two times. Multi-
plying Eq. (7) by 2nT2"~! and taking spatial averages,
we have

L1 0) _
— 42T 'u,-VT)

=—2nQn—1)(T2"2(VT,)?. (8)

Note that Eq. (8) is also valid for an incompressible ve-
locity field with a nonphysical impenetrable, free slip
boundary condition, used in some numerical simulations
[191.

Suppose we can neglect the term (72" 'u,-VT)
(which is identically zero if the joint PDF of T, and
u. VT is symmetric in 7.), then by asserting that the
asymptotic PDF’s for the normalized temperature differ-
ences, X, =T./(T2)'2, exist, we obtain the following rela-
tion:

(X2 =Qn— 10X "2Y2), 9)
where Y, =VT./((VT,)®'2, Equation (9) is valid when
fluctuations are decaying (d{T2")/dt=0) and the system
is homogeneous {so that PDF can be computed by spatial

averaging). Again, we assume that a similar relation
holds in general; that is, we assert that

(X =Qn—1){Xx2"2y2), (10)

where Y, =(37./8¢)/{(8T./81) %2, Then we get an ex-
pression for the PDF’s of temperature differences T,

e _ (*x'dx'
P.(x) 7.00) exp[ j; 2.6 ] an
where g, is defined as follows:
(BT /91) D x =
(0= - 12
4 =T e )

As before, the constants C,’s are set by the normalization
condition. The subscripts X, =x indicate that the mean
square is to be calculated at a given value x of X;, the
normalized temperature difference.

We compute P, and g, from the data and test Eq. (11)
as we did with Eq. (5). It is found that Eq. (11) holds
very well for both the convective and passive temperature
data, except for very short time separations. Comparisons

similar to Fig. 1 are shown in Figs. 2(a) and 2(b) for
Ra=7.3x10'" with =1 and 64 experimental sampling
intervals, respectively. Noticeable discrepancy is ob-
served in Fig. 2(a). However, if one forgoes the correct
normalization, the squares can be made (by a translation
of the solid line in the log-linear graph) to lie on top of
the solid line for large |x|. Thus, even in the case of very
short time separations, the form of Eq. (11) still works
well for large fluctuations. The agreement is better for
longer time separations, as can be seen from the smaller
values of n [Eq. (6)] for larger values of 7 (see Table I).
Moreover, for hard turbulence in thermal convection, we
discover that q.(x) scales as some power of x:

g:(x)~A|x|?® forlarge |x]| . (13)

In[P,(x)]

In[P,(x)]

" | |
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FIG. 2. Similar to Fig. 1 for PDF’s of the normalized tem-
perature differences, P.(x), for the convective turbulence data
with Ra=7.3x10!%, The plotting scheme is the same as Fig. 1
with the squares obtained from g¢,(x) using Eq. (11). (a) 7 =1
and (b) 64 experimental sampling intervals. A noticeable
discrepancy between the two PDF’s is observed for very short
time separations.
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Using this result in Eq. (11), we get

|x'2—a
P.(x)~exp| ——————| forlarge |x|. (14)

AQ—a)

This is exactly the stretched-exponential behavior that
was found before [5]. We check that the values of 2—a
are consistent with those of B [even for the shortest time
separations which demonstrates that the form of Eq. (11)
does work well for large [x 1.

Hence, we have discovered two PDF relations of the
Sinai-Yakhot type, one for the PDF of temperature fluc-
tuations [Eq. (5)], and the other for the PDF’s of temper-
ature differences [Eq. (11)], which work well for both
convective turbulence data and passive temperature data
in which fluctuations are sustained by external forcing.
These PDF relations can be obtained by generalizing a
statistical relation of the fluctuation-dissipation form [Eq.
(2)1, which is derived [6] only for decaying fluctuations.
This suggests that there is a universality in turbulence.
We anticipate that similar PDF relations will hold for
other scalar fields, like the concentration field (of the dye
used as a marker for flow) in wakes of cylinder and tur-
bulent jets [20]. It would be interesting to check whether
this is true. With these PDF relations, we can have a
classification of different turbulent states according to the
different functional forms of g or ¢g,. For example, a con-
stant g gives a Gaussian PDF, a power-law behavior of ¢
[g(x) ~x* with 0 < a < 2] gives a stretched-exponential
PDF of —exp(—|x|?#) with =2 —a, while a quadratic
g (g~x?) gives an algebraic PDF of ~|x|~”7 with
p >0, which is related to the hyperbolic intermittency ob-
served in atmosphere dynamics [21].
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