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Various works have suggested that the Bondi-Sachs-Penrose decay conditions on the gravitational field

at null infinity are not generally representative of asymptotically Hat spacetimes. We have made a de-
tailed analysis of the constraint equations for "asymptotically hyperboloidal" initial data and find that
log terms arise generically in asymptotic expansions. These terms are absent in the corresponding
Bondi-Sachs-Penrose expansions, and can be related to explicit geometric quantities. We have neverthe-
less shown that there exists a large class of "nongeneric" solutions of the constraint equations, the evolu-

tion of which leads to spacetimes satisfying the Bondi-Sachs-Penrose smoothness conditions.

PACS numbers: 04.20.Cv, 04.30.+x

One of the milestone predictions of general relativity is
that of the existence of gravitational radiation. A frame-
work for analyzing that aspect of the theory was proposed
by Bondi, van der Burg, and Metzner [1] and Sachs [2]:
In [1,2] it was assumed that the metric admits an expan-
sion in terms of inverse powers of r along lightlike direc-
tions, where r is a luminosity distance (cf. also [3] for
some significant early analysis). It was subsequently
realized by Penrose [4] that the Bondi-Sachs asymptotic
conditions are related to (and in fact equivalent to) the
possibility of completing the spacetime by adding to it a
conformal boundary. In the Penrose approach the hy-
pothesis of the existence of expansions in terms of r ' is

replaced by assumptions on the regularity of the confor-
mally rescaled metric near the conformal boundary.
Both in the Bondi-Sachs and in the Penrose framework
the basic open question was and still is the following: Are
the Bondi-Sachs-Penrose asymptotic conditions compati-
ble with the behavior of the gravitational field in a
"sufficiently large" class of physical situations? It should
be stressed that until 1986, those metrics which were
known to satisfy the appropriate asymptotic conditions
(cf., e.g. , [5] for a review), namely, the boost-rotation
symmetric spacetimes and the Robinson-Trautman space-
times (cf. also [6]), were of a rather special kind.

Significant progress towards the understanding of this
question was made by Friedrich, who showed [7] that
spacetimes satisfying the Bondi-Sachs-Penrose conditions
could be constructed provided that sufficiently well
behaved initial data "of hyperboloidal type" could be
found. The question of the "largeness" of the set of
spacetimes admitting smooth conformal completions was
consequently shifted to the question of the largeness of
the set of initial data satisfying the conditions spelled out
by Friedrich. The possibility of constructing appropriate
initial data was demonstrated in [8] under, however, some
rather restrictive hypotheses on the extrinsic curvature of
the Cauchy surface. In this Letter we present the results K—=g;, K"=3 (3)

of [9] and of [10] concerning the possibility of construct-
ing appropriate initial data using the conformal Cho-
quet-Bruhat-Lichnerowicz- York [11] method. Our
main results are the following: For generic "seed fields"
the Cauchy data constructed by the conformal method
starting from a "smoothly conformally compact"
Riemannian manifold do not possess the asymptotic regu-
larity compatible with Penrose's smoothness requirements
for null infinity (/). [The notion of nongenericity re-
ferred to here is made clear by Eqs. (10) and (11)
below. ] On the other hand, there exists a large class of
nongeneric "backgrounds" for which the solutions display
the required regularity. The "generic nonsmoothness of
2" suggested by our analysis confirms a similar observa-
tion of Christodoulou and Klainerman [12]. It is also ful-

ly consistent with Winicour s [13] analysis of Bondi-type
initial data (cf. also [14]), as well as with various approx-
imation calculations (cf. [15] and references therein).

Let us recall the Lichnerowicz-Choquet-Bruhat- York
method for constructing solutions of the constraint equa-
tions (1),(2) of general relativity, with asymptotic condi-
tions appropriate to the "hyperboloidal" initial value
problem [7]; cf. also [8,9]. Let M be a smooth, connect-
ed, Hausdorff, compact three-dimensional manifold with
smooth boundary, set M =intM, t)M =t)M—=M)M. For
0 ~ k ~ ~ let C"(M ) denote the space of k times
differentiable tensor fields on M which, in local coordi-
nates near 6M, extend continuously to BM together with
all derivatives of order less than or equal to k. We wish
to find initial data (g, K) which solve the general relativ-
istic constraint equations

R(g) =g;,g«K "K" (g;,K")', — (I)
D;(K"—gk(K"'g") =0, (2)

where D; is the Levi-Civita connection of gz, and R(f) is
the Ricci scalar of a metric f, satisfying the condition
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We may construct such data from a set of "seed fields"
(g~, A' ), where g~ is any smooth Riemannian metric on
M extending smoothly to 6M, and 8'~ is any symmetric,
traceless tensor field on M extending smoothly to 6M, via
the following procedure: Let x be any defining function
for r)M, i.e., a function satisfying x C C (M), x ~ 0,
x(p) =0 p E t)M, and dx&0 at riM. Let A'~ E C (M)
be symmetric traceless and let X be any solution of the
equation

=0, while both Lp (t ) —
2 Lp hcDh and L~ (i )

—
—,
' I

~ h~oh are freely specifiable tensor fields on

6M. I is unique in an appropriate class of functions; cf.
[9] for details. (2) For any (g, A) as above one can find a
solution rp E A~hg of Eq. (6), where Aphg denotes the
space of polyhomogeneous functions on M: more pre-
cisely, there exists a sequence [N&I &

=p with N p
=N

~

N p N 3 0, N4 = 1 and functions rp;7 E C (M ) such
that

D; [x '(D'X~+ D~X' —-' D, X"g'')] = —D (x 'A'~)

(4)

w;

x Iog&x, (7)

define

2 2

I.'~—= O'X~+ D~X' ——D, X'g'~ +
X X

(s)

where co is a solution of the equation

~&g~ ——', ID~le'+ 4 ~'[R(g) —lLI,']+ -', =0, (6)

(x/rp) L' =U' +x logxUl g, U'~, Ul s 6 C (M) .

Given any g there exists an open dense set [in the
C (M) topology] of A's I'or which Ul,gl&~&0 (however,
there exists an infinite dimensional closed subspace of 2 s
I'or which Ul, gIp~=O). If Ul~oslp~=—0, then Ul,g=O and
thus x rp L'~ 6 C (M). Let us also note that in an
orthonormal frame e; such that eA119M, 8 =2, 3, if we
write, in a neighborhood of BM,

L'~ =Lg (i )+xLIJ (~ )+
where i denotes coordinates on 6M, then we have Lo'

satisfying co~ 0, with cox ' uniformly bounded on M
from above and uniformly bounded away from zero, and
where lLlg =gp gq~L'"L '. Setting

g;. =co g;, K =co I ~+g

one obtains a solution of (1),(2) satisfying (3). More-
over, when X is chosen appropriately the fields (g;z, K'~)

satisfy (in a rough way) the asymptotic conditions ap-
propriate to the "asymptotically hyperboloidal" setting
(cf. [7,9]). The asymptotic behavior of the initial data as
described above is somewhat reminiscent of that which
occurs for initial data induced on a standard hyperboloid
in Minkowski spacetime, whence the terminology above.

It should be pointed out that Eqs. (4)-(6) constitute a
nonlinear system of elliptic equations uniformly degen-
erating at the boundary r)M, which is at the origin of
various di%culties. Although a vast literature on such
problems exists (cf. [16] and references therein), no de-
tailed information of the kind needed, e.g. , for Friedrich s
evolution theorems [7] can be found.

For simplicity we shall assume throughout this Letter
that r)M =5 —the two-dimensional sphere. In [9] the
following has been shown: (I) For any (g, A) as above
one can find a solution %to (4) such that

where "—"means "asymptotic to," in the sense that co

minus an appropriately truncated sum of the form given
by the right-hand side of (7) vanishes faster than x" with

any desired n, and that this property is preserved under
differentiation in the obvious way. According to standard
terminology, functions with these properties are called
polyhomogeneous; cf., e.g. , [17]. For an open dense set
of (g, A)'s we have cp4 ~lp~gO. If rp4 ~lp~=O, then rp

c C "(M).
Suppose now that one has initial data such that the log

terms described above do not vanish. In such a case the
metric will immediately pick up log terms when time-
evolved with Einstein equations, so that at later times
there will be no decomposition of the three-dimensional
metric into a smooth up to the boundary background and
a conformal factor. This shows that it is natural to con-
sider the above construction under the condition that the
seed fields are polyhomogeneous rather than smooth.
One can show [9] that for any polyhomogeneous Rieman-
nian metric g on M and for any uniformly bounded po-
lyhomogeneous symmetric tensor field 2'~ on M there ex-
ist solutions (X,cp) of (4) and (6) such that L'~ given by
(5) is polyhomogeneous and uniformly bounded on M,
and rp/x is polyhomogeneous, uniformly bounded, and
u n i form ly bounded away from zero on M.

When I'~—:0 and the seed metric is smooth up to the
boundary, the obstructions to smoothness of co have been
analyzed in detail in [8]. In that reference it has been
shown, in particular, that cp4 ~ lp~ vanishes if the Weyl
tensor of the unphysical (conformally rescaled) spacetime
metric is bounded near BM (cf. [8] for details). In [10]
we have extended that analysis to the case L"40. In or-
der to present our results it is useful to define two tensor
fields o. —defined on the conformal boundary 6M of the
in i tia 1 data su r face:

h ~~x~D &CD
~AB ~AB h AB — +AB h AB2

which we shall call the shear rensors of rlM Here h~g is.
the induced metric on BM, XAB is the extrinsic curvature
of r)M in (M, g), and K~ is the extrinsic curvature of M
in the conformally rescaled spacetime metric.
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Let us say that a spacetime admits a polyhomogeneous
2 if the conformally rescaled metric is polyhomogeneous
at the conformal boundary; i.e. , in local coordinates the
components of the con formally rescaled metric are
bounded and polyhomogeneous. I n the case of Cauchy
data constructed as described above starting from smooth
seed fields, the results of [10] linking the geometry of the
boundary of the initial data surface with the geometry of
the resulting spacetime can be summarized as follows:
(I ) Suppose that neither o.+ nor cr vanishes. Then
there exists no development of the initial data with a
.smooth or polyhomogeneous 2. (2) Suppose that cr+=0
or a =0; changing the time orientation if necessary we

may without loss of generality assume that a+=0. Let
K'j denote "the logarithmic part" of K;:

K'j K'j +x logxK'j

K;~ 6 C (M), K~j'g 6 C (M) A At, hg.

The the following holds: (a) If K~'g~BM~O, then if
there exists a development with a polyhomogeneous J, it
is essentially polyhomogeneous, i.e., no development with
a smooth J exists. [The vanishing of K|p~BM is actually
equivalent (under the present assumptions) to the vanish-
ing at the conformal boundary of the Weyl tensor of the
conformally rescaled metric. ] (b) Suppose instead that
KIg~BM ——0 and K~'p~BM ——0. Then there exists a develop
ment which admits a smooth conformal boundary

It should be stressed that the results linking the log
terms with the nonvanishing of the Weyl tensor proved in

[10] show that the occurrence of shear and of at least
some of the log terms in asymptotic expansions of physi-
cal helds at J is not an artifact of a bad choice of a con-
formal factor, or of a pathological choice of the initial
data hypersurface (within the class of uniformly bounded
from above and uniformly bounded away from zero, lo-
cally C, conformal factors and C' deformations of the
initial data hypersurface which fix BM): If J is not
shear-free (by which we mean that none of the shear ten-
sors o — vanish), then no conformal transformation will

make it shear free. Similarly if the Weyl tensor does not
vanish at 6M, then no "gauge transformation" in the
above sense will make it vanish (cf. [10] for a more de-
tailed discussion).

The conditions for smoothness up to boundary of an in-
itial data set can be expressed as local conditions on the
boundary on the seed fields (g~, A'~). Let (x, ~ ) be a
Gauss coordinate system near BM; the interesting case is
the one in which one of the shear tensors of the conformal
boundary vanishes, which corresponds to the condition
that, changing 2;j to —8;~ if necessary,

(~AB 2 ~hAB ) I BM (AIAB 2 h ~CDhAB ) I BM

It can be shown that without loss of generality in the con-
struction of' the initial data one can assume that

~ iilBM =o,

Then the conditions for smoothness up to the boundary of
m and I '~ reduce to

~AB + RAB~ ] IBM (10)

where 8 is the covariant derivative operator of the metric
h induced from g on BM, R;~ is the Ricci tensor of g, and

[r)x~AB 2 h r)xAIcohAB] IBM =0 .

Failure of (10) or (11) will lead to the occurrence of
some log terms in the initial data set.

The overall picture that emerges from the results of
[9,12-15] and from the results described here is that the
usual hypotheses of smoothness of 2 are overly restric-
tive. These results seem to indicate that a possible self-
consistent setup for an analysis of the gravitational radia-
tion is that of polyhomogeneous rather than smooth func-
tions on the conformally completed manifold, i.e. , func-
tions that have asymptotic expansions in terms of powers
of x and logx rather than of x only. It should, however,
be stressed that even though the fact that the physical
fields (g, K) satisfy the constraint equations guarantees
the existence of some vacuum development (V, y), it is by
no means obvious that in the case when, e.g. , o.+=—0, the
existence of some kind of compactification of (M, g, K)
implies the existence of some useful conformal com-
pletion of (V, y). In the case of polyhomogeneous hyper
boloidal initial Cauchy data the question of existence of
conformal completions of (V, y) with three-dimensional
boundaries is the most important unsolved mathematical
problem of the present theory. Nevertheless we expect
that polyhomogeneous initial data of the kind constructed
in [9] for which the shear of 2 vanishes will lead to space-
times with metrics which along lightlike directions admit
expansions in terms of r ~l g'or [18], rather than in terms
of r ~ as postulated in [1,21 (cf. [14] for a more detailed
discussion of that question).

The results presented here immediately lead to the fol-
lowing question: how much physical generality does one
lose by restricting oneself to Cauchy data which satisfy
the conditions (10), (11)? These conditions are similar
in spirit to those of Bondi, van der Burg, and Metzner
[1], who impose conditions on the r terms in the "free
part of the metric" at u =0 to avoid the occurrence of
r ~log'r terms in the metric at later times. By doing so,
or by imposing (10), (11), one gains the luxury of work-

ing with smooth conformal completions, avoiding all the
complications which arise due to the occurrence of log
terms —but, then, does one overlook some physically

and in what follows we shall assume that this condition
holds —the equations below would have been somewhat
more complicated without this condition. Similarly, it is
useful to choose a "conformal gauge" such that

~AB I BM
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significant features of radiating gravitating systems?
To obtain a real understanding of gravitational radia-

tion, it is therefore necessary to establish what asymptotic
conditions are appropriate from a physical point of view.
The following are some criteria which might be con-
sidered as physically desirable: (i) existence of a well

defined notion of total energy; (ii) existence of a well

defined notion of angular momentum; (iii) existence of a
development (V, y) of the initial data set which admits a
2 with a reasonable regularity; and (iv) existence of a de-
velopment of the data up to i+. In some situations it

might be appropriate to impose only part of the above
conditions. On the other hand it might perhaps be ap-
propriate to add to the above the requirement that the
function spaces considered include those data sets which
arise by evolution from generic initial data which are
asymptotically flat at spatial infinity.

We would like to emphasize that it is not known what
regularity conditions on the con formally compactified
metric are necessary for any of the above criteria to hold.
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