Spin Gaps and Spin Dynamics in $La_{2-x}Sr_{x}CuO_{4}$ and $YBa_{2}Cu_{3}O_{7-\delta}$

A. J. Millis

AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974

H. Monien

Institute for Theoretical Physics, University of California, Santa Barbara, California 93103

(Received 14 August 1992)

A magnetic susceptibility which decreases with decreasing temperature is observed in all CuO_2 based superconductors with less than optimal doping. We propose that in $La_{2-x}Sr_xCuO_4$ this is due to spin density wave ordering which is prevented by the low spatial dimensionality, while in YBa₂Cu₃O_{6.6} it is due to the interplay between antiferromagnetic fluctuations within a plane and singlet pairing of electrons between nearest neighbor planes.

PACS numbers: 74.65.+n, 75.10.-b, 75.30.Kz, 76.60.-k

How unusual is the normal (i.e., $T > T_c$) state of the high- T_c CuO₂ superconductors? There are two points of view: that an essentially Fermi-liquid-like picture applies, or that a fundamentally new non-Fermi-liquid physics is required. One important piece of *experimental* evidence for the existence of non-Fermi-liquid behavior is the temperature (T) dependence of the spin susceptibility χ_s . In "underdoped" high- T_c materials (i.e., those with fewer carriers than the number which optimizes T_c), χ_s decreases with decreasing T, in sharp contrast to the χ_s of a conventional Fermi liquid, which would be T independent.

In this paper we explain the physical origin of the observed $\chi_s(T)$. We focus on the two best studied CuO₂ systems: $La_{2-x}Sr_{x}CuO_{4}$, in which the basic structural unit is a single CuO_2 plane weakly coupled to other CuO_2 planes, and $YBa_2Cu_3O_{7-\delta}$, in which the basic structural unit is a pair of coupled CuO₂ planes. We determine the magnitude of χ_s in La_{2-x}Sr_xCuO₄ (about which there are conflicting assertions in the literature). Then, by analyzing and contrasting the static and dynamic spin susceptibilities in the two systems we show that in $La_{2-x}Sr_xCuO_4$ the $\chi_s(T)$ observed for x < 0.15 is caused by a spin density wave (SDW) instability, which is prevented from developing into true long-range order by the low dimensionality and the onset of superconductivi-However, in the underdoped members of the ty. $YBa_2Cu_3O_{7-\delta}$ series novel non-Fermi-liquid behavior occurs because of spin singlet pairing of electrons in adjacent CuO₂ planes.

The ideas we present here are related to previous work on the high- T_c problem. Johnston argued early on that incipient magnetic order explained the La_{2-x}Sr_xCuO₄ data [1]. SDW correlations are also important in the spin-bag model [2] and other theories of La_{2-x}Sr_xCuO₄ [3]. Our analysis of YBa₂Cu₃O_{6.6} is related to previous work of Altshuler and Ioffe as discussed below [4], and also to the work of DaGotto, Riera, and Scalapino [5]. Magnetic correlations between planes in YBa₂Cu₃O_{6.6} have been observed by Tranquada *et al.* [6]. Many authors have studied models which predict "spin-gap" behavior for electrons moving in a single CuO₂ plane, and have argued that because these theories produce a $\chi_s(T)$ similar to that observed in $YBa_2Cu_3O_{6.6}$ they must be relevant to CuO_2 materials [7]. Our analysis implies, on the contrary, that they are not.

We now turn to the data. χ_s may be determined from the measured bulk susceptibility $\chi_b = \chi_s + \chi_c + \chi_{vV} + \chi_{dia}$ if the core (χ_c) , van Vleck (χ_{vV}) , and Landau diamagnetic (χ_{dia}) contributions are known. In YBa₂Cu₃O₇, χ_{dia} is less than $\frac{1}{6}$ of χ_s [8]. We neglect χ_{dia} in our analysis. χ_s for the YBa₂Cu₃O_{7- δ} materials is known [9]. For $La_{2-x}Sr_{x}CuO_{4}$, however, there are conflicting assertions in the literature [10-13]. We estimate that in the La₂CuO₄ ($\chi_c + \chi_{vV}$) \approx 1.0 states/(eVCu) for fields parallel to the CuO_2 plane and -1.3 states/(eVCu) for fields perpendicular to it by comparing the measured [10] susceptibility (at temperatures of order 600-800 K, well above the 3D Néel ordering temperature) to the known [14] values for the 2D $S = \frac{1}{2}$ quantum Heisenberg model [15]. Our estimates of $(\chi_c + \chi_{vV})$ for La₂CuO₄ agree with [10]. The example of the YBa₂Cu₃O_{7- δ} series [9] and the near equality [10] of the difference between the a-bplane and c axis susceptibilities of La₂CuO₄ and La_{1.925}Sr_{0.075}CuO₄ shows that it is reasonable to assume that χ_{vV} and χ_c do not change much with doping; we use this assumption to extract χ_s from χ_b .

Figure 1 shows $\chi_s(T)$ for some high- T_c materials, and for the $S = \frac{1}{2}$ 2D Heisenberg model with J = 0.13 eV. It is clear that the spin susceptibility of YBa₂Cu₃O_{6.6} is smaller in magnitude and larger in relative temperature dependence than that of all of the others and is the only one which extrapolates to zero at T=0. To obtain information about the dynamic susceptibility $\chi''(q,\omega)$ we consider nuclear relaxation rates $1/T_1T$. These are determined by weighted averages over q of the low frequency limit of $\chi''(q,\omega)$. Different nuclei have different weighting factors and probe different regions of a space. In all high- T_c superconductors the copper (Cu) and oxygen (O) relaxation rates have different T dependences [9]. The difference has been successfully explained by a model of T-dependent antiferromagnetic (AF) spin fluctuations which relax the Cu but not the O nuclei [16]. Figure 2 shows the copper nuclear relaxation rate $(1/T_1T)$ data [17,18]. The relaxation rates in $La_{2-x}Sr_xCuO_4$ are larger and more strongly temperature and doping dependent

FIG. 1. Spin susceptibilities of high- T_c materials obtained from data as described in the text, along with the theoretical susceptibility of the 2D $S = \frac{1}{2}$ Heisenberg model [15].

than in YBa₂Cu₃O_{7- δ}. Further, in La_{2-x}Sr_xCuO₄ the Cu 1/T₁T increases as T decreases except in a small region below about T = 50 K (which we suspect is dominated by superconducting fluctuations), in contrast to YBa₂Cu₃O_{6.6} where the Cu 1/T₁T has a broad maximum at T = 150 K. In YBa₂Cu₃O_{6.6} the oxygen 1/T₁T has nearly the same T dependence as $\chi_s(T)$ [9].

The distinctive behaviors of $La_{2-x}Sr_{x}CuO_{4}$, namely, a decrease, but not to zero, of χ_s and a monotonic increase in the Cu $1/T_1T$ as $T \rightarrow 0$, are signatures of SDW antiferromagnetism [19]. To see this, note that mean-field theory predicts a transition at a temperature $T_{\rm MF}$ to a phase with nonzero staggered magnetization N. In two spatial dimensions, thermal fluctuations prevent longrange order for T > 0 [20]; for $T < T_{MF}$ the appropriate picture is of slowly fluctuating domains, with N nonzero, but random from domain to domain. χ_s in this situation may be reasonably approximated by rotationally averaging the mean-field result, and rounding out the singularity at T_{MF} . This leads to a susceptibility which drops by a factor of $\frac{2}{3}$ between $T_{\rm MF}$ and 0 [21]. These arguments imply that antiferromagnetic fluctuations at $T < T_{MF}$ lead to a $\chi_s(T)$. However, a mode-coupling analysis of antiferromagnetic fluctuations at $T > T_{MF}$ yields a negligible T dependence of χ_s [22]. Thus we propose that in the La₁₉₂₅Sr_{0.075}CuO₄ sample the T_{MF} is rather above room temperature while in the La_{1.86}Sr_{0.14}CuO₄ sample it is somewhat below. This may be consistent with neutron scattering experiments on $La_{1.86}Sr_{0.14}CuO_4$ [23] in which quite sharp peaks are observed emerging at low T. For still larger Sr concentrations, $T_{MF} < T_c$ and χ_s in our model would not decrease with decreasing T, in agreement with data [10]. The $\chi_s(T)$ in La_{2-x}Sr_xCuO₄ was previously argued to be consistent with that of the 2D

FIG. 2. Copper nuclear-quadrupole-resonance relaxation rates of high- T_c materials from Refs. [17,18]. Reference [18] used a normalization convention which differs from one used here by a factor of 3. We have reexpressed the data of Ref. [18] accordingly.

 $S = \frac{1}{2}$ Heisenberg model with an x dependent $J \sim 300-400$ K at x = 0.14 [1]. A difficulty with this interpretation is that the $\chi_s 1/T$ behavior of the Heisenberg model at T > J is not observed [10]. We feel the SDW interpretation is more reasonable.

In our picture the Cu NMR relaxation is dominated by the relaxational dynamics of the AF fluctuations, so $1/T_1T \sim \sum_{q} \xi^{2-\eta+z} f(q\xi)/g(q\xi) \sim \xi^{z-\eta}$, where ξ is the correlation length, η and z are critical exponents, and f and g are scaling functions for the staggered susceptibility and spin fluctuation energy scale, respectively. Note this form is not multiplied by $\chi_s(T)$ in contrast to Ref. [13]. The "MMP" form proposed [16] for YBa₂Cu₃O₇ corresponds to $\eta = 0$, z = 2, and $f = g^{-1} = (1 + q^2 \xi^2)$. For $T \gtrsim T_{\rm MF}$, the MMP forms are appropriate; as $T \rightarrow 0$ the function must cross over to the 2D AF scaling forms, in which z = 1. The oxygen relaxation rate, however, is due to small-q spin fluctuations [9]. In an ordered antiferromagnet relaxation is due to spin waves; at low T the number of thermally excited spin waves is small and the projection of these onto the small-q fluctuations relaxing the oxygen site vanishes as $q \rightarrow 0$, so that the oxygen $1/T_1T \sim T^3$ [24]. Similarly in a 2D SDW below $T_{\rm MF}$ the formation of antiferromagnetic domains will lead to an oxygen $1/T_1T$ which drops more rapidly than $\chi_s(T)$, in contrast to the prediction in [13]. If our analysis of $\chi_s(T)$ is accepted then this behavior has already been observed [11,25].

Now consider YBa₂Cu₃O_{7- δ}. The basic structural unit is a pair of CuO₂ planes, separated from the next pair of CuO₂ planes by the relatively inert CuO chains [26]. Neutron scattering measurements on YBa₂Cu₃O_{6.6} reveal that at least the $\mathbf{q} = (\pi, \pi)$ spin fluctuations on near neighbor CuO₂ planes are perfectly anticorrelated up to 40 meV and room temperature, implying the planes are magnetically coupled [27]. We argue that this coupling leads to the formation of singlet pairs with one member in each plane. We study this effect in a simple model of two coupled planes of antiferromagnetically correlated spins introduced to describe the insulating antiferromagnetic phase of YBa₂Cu₃O_{6+x} [6]. The Hamiltonian is

$$H = J_1 \sum_{\langle i,j \rangle,a} \mathbf{S}_{i(a)} \cdot \mathbf{S}_{j(a)} + J_2 \sum_i \mathbf{S}_{i(1)} \cdot \mathbf{S}_{i(2)} .$$
(1)

Here i and j label nearest neighbor sites in a twodimensional square lattice and $a \in \{1,2\}$ labels the two different planes. This model has a T=0 phase transition between a large J_2 singlet state and a small J_2 antiferromagnetic state. Reference [6] gave a classical spin-wave analysis of some properties of the ordered phase. The spin-wave analysis cannot be used to study the disordered phase and the transition; we use instead the Schwinger boson method [28]. Applying this to Eq. (1) we find the second order transition of interest here is preempted by a first order transition. In the mean-field analysis, sums over the momentum q occur; these may be replaced by an integral over an energy times a density of states which, for the model of Eq. (1), is constant near the band edges and logarithmically divergent at band center. Replacing this density of states by a constant yields a model with a second order T=0 transition (of the 3D Heisenberg universality class) at $J_2^* = 4.48J_1$.

We have computed $\chi_s(T)$ and the oxygen, yttrium, and copper NMR relaxation rates for various $J_2 > J_2^*$ using Eq. (1), the constant density of states, and a simplified version of the standard NMR form factors [16] in which the Cu transferred hyperfine coupling B was set to 0. Some results are shown in Fig. 3 for $J_2 - J_2^* = 0.3J_1$; the resemblance of the curves for Cu and O to the data for YBa₂Cu₃O_{6.6} is evident, and suggests that the physics of Eq. (1) is relevant to this material. Note in particular

FIG. 3. Copper, oxygen, and yttrium relaxation rates calculated for a model of two coupled antiferromagnetically correlated planes using Schwinger boson mean-field analysis of Eq. (1) for $J_2 - J^* = 0.3$. The left ordinate shows the Cu and O relaxation rates $1/T_1T$ (solid lines); the right ordinate shows the ratio of the O and Y $1/T_1T$ to the calculated spin suceptibility χ_s .

2812

the existence of two temperature scales; a higher one, of order J_2 , at which χ_s and the oxygen $1/T_1T$ begin to drop, and a lower scale of order $T^* \sim (J_2 - J^*) < J_2$, at which the Cu $1/T_1T$ begins to drop. The different T dependences of the Cu and O $1/T_1T$ in our model are due to both a growing correlation length and different size spin gaps in different regions of q space, in contrast to a previous model [29] in which the difference was due only to a T-dependent correlation length. The difference between the O and Y relaxation rates arises in our model because the Y nucleus is relaxed only by fluctuations symmetric under interchange of the two planes; these are the most strongly suppressed by the tendency to form singlets. The experimental situation is not settled: Published Y relaxation data indicate Y and O relaxation rates have the same temperature dependence [30] but a very recent preprint reports that the Y rate falls faster than the O rate in YBa₂Cu₃O_{6.6} [31].

We have computed the dynamical susceptibility $\chi''(q,\omega)$ at in-plane $\mathbf{q} = (\pi,\pi) = Q_{AF}$. For $T < T^*$ this shows an onset at $\omega \sim 2T^*$, and has no other low energy structure. Neutron scattering data show at low T an onset of scattering at 9 meV [27] or 16 meV [32] (i.e., at $\omega \sim T^*$) and additional structure at higher ω . We have also computed the dependence of $\chi''(q,\omega)$ on the momentum transfer between planes. We find that for in-plane $q = Q_{AF}$ the observed [27] "bilayer modulation" persists up to $\omega \sim \max[J_2, (J_1J_2)^{1/2}]$ independent of the value or existence of the spin gap, so we believe the modulation is evidence that the planes are coupled but is not a consequence of the existence of the spin gap. We have also computed the static susceptibility at $q = Q_{AF}$, $\chi_{AF}(T)$. For all $J_2 > J_2^*$ we find χ_{AF} decreases with T for T less than the temperature at which $1/T_1T$ for Cu has its maximum. This is inconsistent with recent T_2 measurements on $YBa_2Cu_4O_8$ [33] (which has the same spin-gap behavior as YBa₂Cu₃O_{6.6}). These imply that $\int dq [\chi'(q)]^2$ $\sim \chi_{AF}$ increases monotonically and smoothly by a factor of 2 between 300 and 100 K, so that as T decreases spin fluctuation weight is not only pushed away from low frequencies but also pulled down from high frequencies. Equation (1) does not contain this physics.

A realistic theory must incorporate itinerant carriers, and as in $La_{2-x}Sr_xCuO_4$ a Fermi-surface-instability description of the magnetic dynamics is required. One possibility, a model of two planes of fermions, with a J_2 and with direct hopping from plane to plane forbidden, was shown in Ref. [4] to lead to a crossover below a temperature T_{pair} to a "superconducting" state in which every Cooper pair has one member in each plane. This is a mathematical representation of the between-planes singlet produced by the J_2 interaction of Eq. (1); it need not imply the presence of true superconducting order [4]. Because the itinerant carriers suppress the magnetism, very much smaller values of the coupling J_2 than were required in the spin-only model of Eq. (1) will produce appropriate interplane pairing. We have not yet fully incorporated antiferromagnetism in the formalism of Ref. [4], but have shown that the requirement $J_2 > J_1$ of the insulating model is replaced by $T_{pair} > T_{SDW}$, and that coherent three-dimensional transport acts as a pair breaker [22]. This provides a possible explanation of the difference between YBa₂Cu₃O_{6.6} and YBa₂Cu₃O₇: In the latter material the much larger hole density permits three-dimensional transport which is strong enough to destroy the interplane pairing.

In this paper we have proposed models for the magnetic dynamics of underdoped cuprates. A crucial datum is the $T \rightarrow 0$ extrapolation of $\chi_s(T)$. We have argued that this is nonzero and indeed large in La_{2-x}Sr_xCuO₄. If it is small, then a one-plane quantum disordered phase must be considered for La_{2-x}Sr_xCuO₄, and the evidence for interplane pairing in YBa₂Cu₃O_{6.6} is weakened. Two important consequences are (a) in La_{2-x}Sr_xCuO₄ samples with a *T*-dependent χ_s the oxygen $1/T_1T$ should decrease more rapidly than χ_s with decreasing *T* and (b) in YBa₂Cu₃O_{6.6} the Y relaxation rate should drop more rapidly than the O relaxation rate as *T* decreases.

A.J.M. thanks B. Batlogg, R. E. Walstedt, and M. Takigawa for helpful discussions and the generous sharing of unpublished data and C. Berthier for drawing his attention to Ref. [31] and helpful discussions. H.M. thanks AT&T Bell Laboratories for hospitality while part of this work was performed. H. M. was supported by NSF Grant No. NSF PHY89-04035.

- [1] D. C. Johnston, Phys. Rev. Lett. 62, 957 (1989).
- [2] J. R. Schrieffer, X. G. Wen, and S. C. Zhang, Phys. Rev. Lett. 60, 944 (1988).
- [3] V. Barzykin and L. P. Gorkov, Phys. Rev. B 46, 3059 (1992).
- [4] B. Altshuler and L. Ioffe, Solid State Commun. 82, 253 (1992).
- [5] E. DaGotto, J. Riera, and D. J. Scalapino, Phys. Rev. B 45, 5744 (1992).
- [6] J. M. Tranquada, G. Shirane, B. Keimer, S. Shamoto, and M. Sato, Phys. Rev. B 40, 4503 (1989).
- [7] T. M. Rice, in Proceedings of the ISSP Symposium on the Physics and Chemistry of Oxide Superconductors, Tokyo, 1991 (Springer-Verlag, Berlin, 1991); F. Mila, D. Poilblanc, and C. Bruder, Phys. Rev. B 43, 7891 (1991); S. Sachdev, Phys. Rev. B 45, 389 (1992); T. Tanamoto, K. Kohno, and H. Fukuyama, J. Phys. Soc. Jpn. 61, 1886 (1992); M. Randeria, N. Trivedi, A. Moreo, and R. T. Scalettar, Phys. Rev. Lett. 69, 2001 (1992).
- [8] R. E. Walstedt et al., Phys. Rev. B 45, 8074 (1992).
- [9] For reviews see, e.g., A. J. Millis, in *High Temperature* Superconductivity: Proceedings of the Los Alamos Symposium—1989, edited by K. S. Bedell, D. Coffey, D. E. Meltzer, D. Pines, and J. R. Schreiffer (Addison-Wesley, Redwood City, CA, 1990), p. 198; R. E. Walstedt and W. W. Warren, Jr., Science **248**, 1082 (1990). For χ_s for YBa₂Cu₃O_{6.6} see, e.g., M. Takigawa *et al.*, Phys. Rev. B **43**, 247 (1991).
- [10] B. Batlogg, in Physics of High-Temperature Supercon-

ductors, edited by S. Maekawa and M. Sato, Springer Series in Solid-State Sciences Vol. 106 (Springer-Verlag, Heidelberg, 1992), p. 219ff; (private communication). See, also, L. F. Schneemeyer *et al.*, Phys. Rev. B **35**, 8421 (1987); D. C. Johnston, in *Electronic Properties and Mechanisms of High-T_c Superconductors*, edited by T. Oguchi, K. Kadowski, and T. Sasaki (Elsevier, New York, 1992), p. 301.

- [11] L. Reven et al., Phys. Rev. B 43, 10466 (1991).
- [12] K. Ishida, Y. Kitaoka, G. Zheng, and K. Asayama, J. Phys. Soc. Jpn. 60, 2351 (1991).
- [13] H. Monien, P. Monthoux, and D. Pines, Phys. Rev. B 43, 275 (1991).
- [14] R. R. P. Singh and M. P. Gelfand, Phys. Rev. B 42, 996 (1990).
- [15] The observed values of the spin-wave velocity c and spin stiffness ρ_s , combined with the hydrodynamic relation $c^2 = \rho_s / \chi_{\perp}$, leave little doubt that the susceptibility of La₂CuO₄ should be described by that of the quantum Heisenberg model. See, e.g., S. Chakravarty, in *High Temperature Superconductivity: Proceedings of the Los Alamos Symposium*—1989 (Ref. [9]), p. 136.
- [16] A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).
- [17] S. Ohsugi, Y. Kitaoka, K. Ishida, and K. Asayama, J. Phys. Soc. Jpn. 60, 2351 (1991).
- [18] R. E. Walstedt and W. W. Warren, Jr., Physica (Amsterdam) 163B, 75 (1990).
- [19] The SDW order must be antiferromagnetic on short scales but may cross over to spin-glass order on longer scales. This will not affect our arguments.
- [20] P. C. Hohenberg, Phys. Rev. 158, 383 (1967); N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
- [21] This calculation neglects quantum effects which would reduce χ_s further. These will be less important as T_{MF} is decreased, because a lower T_{MF} implies a larger bare correlation length at T_{MF} and hence a large "effective spin" which is ordering.
- [22] A. J. Millis and H. Monien (unpublished).
- [23] T. E. Mason, G. Aeppli, and H. A. Mook, Phys. Rev. Lett. 68, 1414 (1992).
- [24] N. Bulut et al., Phys. Rev. B 41, 1797 (1990).
- [25] R. E. Walstedt (unpublished).
- [26] T. Siegrist, S. Sunshine, D. W. Murphy, R. J. Cava, and S. M. Zahurak, Phys. Rev. B 35, 7137 (1987).
- [27] J. M. Tranquada, P. M. Gehring, G. Shirane, S. Shamoto, and M. Sato, Phys. Rev. B 46, 5561 (1992).
- [28] D. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988).
- [29] H. Monien, D. Pines, and M. Takigawa, Phys. Rev. B 43, 258 (1991).
- [30] H. Alloul, T. Ohno, and P. Mendels, Phys. Rev. Lett. 63, 1700 (1989).
- [31] M. Takigawa, W. L. Hults, and J. L. Smith (unpublished).
- [32] J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, Physica (Amsterdam) 185-189C, 86 (1991).
- [33] Y. Itoh, H. Yasuoka, Y. Fujiwara, Y. Ueda, T. Machi, I. Tomeno, K. Tai, N. Koshizuka, and S. Tanaka, J. Phys. Soc. Jpn. 61, 1287 (1992).