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On-off' intermittency is an aperiodic switching between static, or laminar, behavior and chaotic bursts

of oscillation. It can be generated by systems having an unstable invariant (or quasi-invariant) mani-
fold, within which is found a suitable attractor. We clarify the roles of such attractors in producing in-
termittency, provide examples, and relate them to previous work.
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The simplest chaotic systems follow similar trajectories
over and over again but they never exactly repeat. This
behavior has long been recognized in celestial mechanics
[I], but only in recent times have simple models for such
aperiodic oscillatory behavior proliferated. More than
this, the time dependence of a variable in a chaotic sys-
tem can lead to signals with a variety of distinct forms.
These range from weak aperiodic modulations of a
periodic signal to apparently random switching amongst
qualitatively diFerent kinds of oscillations.

The latter behavior is called intermittency, probably
after the usage of this word in IIuid dynamics [2]. In
fluid turbulence, the term was introduced to describe sig-
nals from probes in fluids that alternated between flat
portions and bursty ones, interpreted as laminar and tur-
bulent states of the fluid. We shall say that a process
producing this form of intermittency, switching abruptly
from extended periods of stasis to bursts of large varia-
tion, manifests on-o+intermittency.

A model of intermittency in terms of simple dynamical
systems was given by Pomeau and Manneville (PM) [3].
In their discrete time model, a system spends a long time
near a weakly unstable fixed point, or a quasif'txed point,
whose image is not far from the point itself. With the in-

troduction of an aperiodic recurrence mechanism that
turns trajectories back toward this unstable fixed point,
an intermittent signal is produced. Pomeau and Manne-
ville also proposed a classification for various types of in-

termittency corresponding to diFerent modes of instabili-

ty of the fixed point.
The fixed point in the PM model corresponds to a

periodic orbit in the continuous time system that they im-

plicitly describe. Hence their intermittency is generally
not of the on-oF type, for continuous systems. For a sim-

ple example of on-oF behavior, we can parallel their mod-
el with a diFerential equation admitting a critical point
that loses stability with the tuning of a parameter. More
generally, we may use any other weakly unstable, invari-
ant objects representing states near to which the system

will tend to spend long times. In fact, the objects that or-
ganize the behavior do not even have to be invariant. It is
enough that they be quasi-invariant in the systems that
enter their neighborhoods and remain there for a long
time. Intermittent systems can be constructed around ei-
ther invariant or quasi-invariant objects. We shall speak
only of the former for brevity, though the latter could
serve as well and have been used in previous models of in-
termittency. An example can be constructed from the
unstable invariant object devised by Grebogi, Ott, and
Yorke [4], with the introduction of a reinjection mecha-
nism into their model, though the signal produced in this
way would again generally not be of the on-oF kind.

On-oF intermittency occurs when the unstable object
lies in the hyperplane x~ = =x~=0 of the phase
space where the coordinates x i, . . . , x~ with K & Ã ~ ~
are suitably chosen. Though many systems are capable
of producing on-oF signals, they may far less often be
detected since the "suitable" variables may not arise nat-
urally, nor be discovered easily. Good coordinates are
likely to be natural in many real problems where a small
set of variables is observable but a larger number of "hid-
den variables" is believed to be implicated. The solar cy-
cle involves turbulent convection; stock market prices are
influenced by various economic factors; in the wild, popu-
lations of certain species are environmentally influenced.
In these cases, "crashes" are seen —sunspots rarely oc-
curred in Newton's time and species may come close to
extinction and yet survive.

In these examples, the codirnension N —K is quite
large and it is not clear whether the evolution occurring
in the complementary space should be characterized as
deterministic or random. It is a feature of the mechanism
we propose that this distinction does not matter very
much for the shape of the observed signals. This insensi-
tivity may at first surprise those aware of Takens'
theorem [51 ensuring the possibility of estimating the di-
mension of phase space from a time signal. However, an
essential assumption of this theorem is that the variable
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X=F(X,p(r) ),
Y(r) =G(Y, v, ),

(3)

observed is generic. In our construction, the observables
lie in a hypersurface, so this assumption is not satisfied.

Let X= (x i, . . . , xlr ) represent the coordinates in the
K-dimensional hyperplane and let Y=(xx+1, . . . , x&).
The diA'erential equations describing the evolution of the
entire system take the form

X=F(X,Y,po), (I)
Y=G(X, Y, vo), (2)

where po and vo are sets of (bare) parameters.
In the simplest version of the mechanism, we have two

essential ingredients: (a) that the hyperplane X=0 be in-
variant under the evolution described by (1) and (2) and
(b) that there exist orbits entering and leaving every
suSciently small neighborhood of the hyperplane. For
simplicity, at first, we furthermore suppose that the dy-
namics of Y is independent of the observable X.
Mathematicians would then say that the evolution equa-
tion has a skew product structure [6]. Skew products, in
this sense, are often used to construct delicate examples
and counterexamples [6,7], though it may be a quadrivial
problem to learn whether this is essential to the purpose.
In the case of ordinary statistical thermodynamics, the
convenience of a skew product structure is achieved by
assuming that the heat reservoir is infinite and so
indifrerent to what the subsystem of interest does. In our
case, the skew product structure plays a largely pedagogi-
cal role and it will become clear that a dependence of Y
on X will not necessarily change our conclusions.

A skew product structure provides a clear picture of
the dynamics: First of all, it permits us to arrange that
(a) is satisfied. Next, suppose that (1) [or (3a) below]
admits a strange attractor A in the hyperplane A =0 and
that not only is (b) satisfied, but that there exist orbits
entering and leaving every sufficiently small neighborhood
of A in the full N-dimensional space. Then, simply if the
motion in the X direction is bounded, there exists an in-
variant bounded region containing A in which the dy-
namics has the same degree of Y complexity as that of A
itself. That is, the orthogonal projection of every orbit
onto the hyperplane %=0 converges to A as time goes to
infinity.

The crux of our proposal is the interpretation of Y as a
modifier of the parameters controlling the stability of the
observed rest state of X. In the special case of a skew
product structure, the X in (2) is suppressed, so that this
interpretation is manifest. Indeed, in this case, the evolu-
tion equations may be written as

becomes unstable when pp exceeds a certain value p, . If
the dynamics is such that Y(t) explores both of the re-
gions in which p goes above and below p, and if the time
intervals spent in those regions are suitable, then the sig-
nal will have the on-off' form. In the extreme case N =K,
when p is fixed at a constant value only slightly greater
than p„we recover the Pomeau-Manneville mechanism
[3]. In special circumstances like this, we may hope to
compute critical exponents describing the relative times
spent in the regular phase as pp is varied. But, in the
general situation, each case needs a separate analysis and
there is no obvious universality.

These considerations explain the behavior seen in the
following example [g] with E =2 and N =5, which may
contain a dependence of Y on X, according to the choice
of the parameters:

X~ =X2,

x2= —xi —2xix3+xix5 ppix2,3

X3 =X4,

X4 X3 Vp)x i +X5X3 Vp2X4,
3 2

xs = —v03x5 vo4xi —vos(» —I ) .

The hyperplane X=O is clearly invariant. When we
set x ~

=0, x2 =0, we recover a third order system, which
is a version of the Lorenz equations [9]. So, with ap-
propriate choice of parameters, A is a Lorenz attractor.
A sample of the behavior of the variable x~ is given in

Fig. 1. For the parameters of Fig. 1(a), we do not have
the skew product structure. This is brought out in Figs.
2(a) and 2(b), respectively, showing the difference be-
tween the x3-x5 projections of two trajectories, with ini-
tial conditions in and out of the hyperplane X=0 for that
set of parameters. By contrast, for Fig. 1(b) we choose
vp] = vp4 =0 to restore the skew product structure.

As usual in such problems, we turn to discrete time sys-
tems to facilitate the study of long stretches of orbits.
These are indispensable to the investigation of subtle is-
sues such as the distinction between deterministic and
stochastic systems. In order to have a simple means of
comparing diAerent systems, we need to be able to assure
ourselves that the hidden variables in the various cases
have comparable statistics. When the skew product
structure is available, we know how to do this for many
examples.

We write a discrete counterpart of (3)-(5) as

X(n+1) =F(X(n),p(n)),
Y(n+ I) =G(Y(n), vo),

with
with

p(r) =M(po, Y(r)).
Now assume that the rest state L =0 of the equation

p(n+ I ) =M(po, Y(n)) .

It is convenient to put (9) in the form

(9)

X =F(X,I o) (3a) p(n+1) =M(po, Y(n)), (9a)
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FIG. l. The time evolution of x ~ from Eqs. (6) with

pp] =1.815, vpp=1. 815, vp3=0. 44, vp5=2. 86. In (a), vp~ =1.0,
vp4=2. 86 while in (b), vp} —vp4=0. The latter choice gives
skew product structure to the example.

where Y(n) =(x~+~(n), . . . , xM(n)) and M ~ N. This
permits us to include among the possible specifications of
the hidden variables the case of a stochastic background
interpreted as an infinite N with an M that in some cases
may be inferred from the system.

Consider the example

F(X,p) = ~

pLif L~ 4,

3 p(1 —X) otherwise,
(loa)

so that K =M =1. Here, p is determined by

p =p(n+1) =a Y(n) . (IO1 )
We consider two versions of this example: (A) Y is a

X3

FlG. 2. Two portions of trajectories orthogonally projected
onto the x3-x5 plane of Eq. (6) with the same parameter values
as in Fig. 1(a). In (a), the initial condition lies in the subspace
x~ =x2=0 while, in (b), the initial condition is not in this sub-

space.

deterministic process with N =1, namely,

Y(n+ 1)=2 Y(n )mod I;
(B) Y is white noise with support in [0,11, so that N =~.
Thus, in the two versions, the variable x2 is uniformly dis-
tributed in [O, l]. Figure 3 shows some results obtained
for (A) and for (B).

The examples shown here were not at all atypical and,
for them, it is virtually impossible to tell which one is
noise and which one is deterministic, or even that their
provenances are of such different character. It will be in-
teresting to see if specialists in quantifying chaos can de-
vise objective means to distinguish between the two situa-
tions. Whether that will be feasible or not, the kinds of
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FIG. 3. Illustrating the example of (10). (a) and (c) show Y(n+1) as a
X(n) with n. Panels (a) and (b) refer to case (A) Y(n+1) =2Y(n)modl; (c)
random number generator with uniform distribution in [0,1].
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function of Y(n). (b) and (d) show the evolution of
and (d) correspond to case (B) with Y(n) given by a

structures we have sketched here form the basis for a
wide class of chaotic, intermittent systems that may help
in modeling and understanding a variety of physical sys-
tems.
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