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Dynamic Contact Angles and Hydrodynamics near a Moving Contact Line
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The contact angle is an important boundary condition needed to predict the shape of menisci. Howev-
er, its measurement and use under dynamic conditions are not well understood. We have measured the
shape of menisci very close to moving contact lines over a suite of geometric shapes for the macroscopic
menisci. The excellent agreement between theory and experiment establishes that the proposed bound-
ary condition characterizes only the materials of the system. Implications for the microscopic physics
controlling the dynamic contact angle are explored.

PACS numbers: 68.10.Gw, 68.10.Cr, 68.45.Gd

The most commonly used macroscopic characterization
quantifying the wettability of a material system (two im-
miscible Iluids and a solid surface) is the contact angle
This is because the contact angle boundary condition fre-
quently plays a critical role in determining the meniscus
shape. It is the shape of the meniscus that actually
quantifies the degree to which a particular liquid wets a
solid surface. The difficulty with this characterization
arises in the measurement of the contact angle under dy-
namic conditions. This is a direct consequence of the
large curvature of the meniscus (compared to the static
case) very close to even a slowly moving contact line, re-
sulting from dynamic forces [1-6]. We present experi-
mental data which carefully quantify the dynamic con-
tact angle boundary condition for a particular material
system. This represents the first time in which this
boundary condition has been measured for the same ma-
terial system over a suite of geometries of the macroscop-
ic meniscus.

The situation is further complicated by the lack of un-

derstanding of the physics governing the behavior of the
fluids in the immediate vicinity of the moving contact
line. This is true from both a molecular and continuum
perspective. As a consequence, no general consensus ex-
ists of how to quantify the influence of the hydrodynamic
forces on the meniscus shape in the microscopic region
near the moving contact line (on the submicron scale)
[4,7]. Even without this knowledge, the existence of a
well-defined dynamic contact angle boundary condition
has been argued [3,8,9]. It is restricted to situations in

which the overall size of the meniscus is much larger than
a micron, and the capillary number is relatively small.
Briefly, the boundary condition consists of specifying the
asymptotic form of the slope of the interface, 0, as r 0,
where r is the distance to the contact line. (In contrast,
for the static case, the value of 0 is specified only at the
contact line, r =0.) The asymptotic form is

6(r) =g '(Calnr/L) .

Here, Ca denotes the capillary number Up/a, where U is

the speed of the contact line, p is the viscosity of the
liquid, and o is the surface tension; L is the parameter [e-
quivalent to R exp[ —g(6R)/Ca] in [9], implying equiv-
alence to Lsexp[ —g(6,. «)/Ca], where 6tt is the value of
0 at r =R and O,,t is the "actual" or "microscopic" con-
tact angle and Ls is the slip length] having the dimension
of length, which can be determined from experiments;
and g(x) —=fo [(y —cosy siny)/2sinyjdy. (This includes
the simplification that the second fluid in this study is a
gas whose dynamics can be ignored. )

Thus, the objective of this study consists of determining
the validity of using (1) as a boundary condition for the
meniscus shape under dynamic conditions. We compare
experimental measurements of 6(r) over a range of
values of r close to the moving contact line to predictions
obtained from a mathematical solution of the shape of
the meniscus which uses (1) as a boundary condition. An
important aspect of our study is that this comparison is
made using the same material system in more than one
geometry. This last step is essential when evaluating
whether (1) is a characterization of only the materials of
the system. Disagreement in 6(r) between theory and
experiment would have far-reaching implications. For in-

stance, it would bring into question the validity of almost
all the physical models of the dynamic behavior of the
fluids in the immediate vicinity of the moving contact line
developed over the past fifteen years [9].

A suite of experiments was performed using an ar-
rangement similar to that of [9]. We immersed a 2.54
cm outer diameter Pyrex cylindrical tube, at a constant
speed, into a beaker of polydimethylsiloxane (PDMS) po-
lymer melt (see Fig. 1). This geometry possesses the
largest length scale, the capillary length, associated with
the macroscopic meniscus. The tube was tilted at an an-
gle a relative to the horizontal, and translated along its
axis. The slope of the interface 6(r) was measured close
to the moving contact line situated on the surface of the
tube. The air-oil interface was just above the lip of the
beaker, making 6(r) directly measurable. The experi-
ments were performed over a range of immersion speeds
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FIG. 1. Schematic of the apparatus showing the immersed
cylinder geometry for viewing the meniscus shape near the mov-

ing contact line. The immersion angle is a as shown for the im-
aged region on the left, and 180' —a for that on the right.

(1.5 pm/s to 350 pm/s, giving Ca from 7&&10 to
2X10 ) in order to assess the inhuence of the contact
line speed on the dynamic contact angle boundary condi-
tion. They were then repeated over a range of a
(60' & a & 120') to determine the inhuence of geometry
on the boundary condition, each a resulting in a different
geometry of the silicon oil (not done in [9]).

The Pyrex tube was fire polished and carefully cleaned
so that the contact line moved smoothly across its surface.
The PDMS had a viscosity g =1030 cP, surface tension
cr =20.8 dyn/cm, and density p=0.970 g/cm . Using el-
lipsometry, we found no thin film in front of the bulk
meniscus after a time comparable to that of our experi-
ments.

Images of the meniscus profile were obtained using a
long working distance microscope and a high resolution
charge-coupled device camera, and were digitized on a
microcomputer. Koehler illumination conditions ensure
an even background illumination and optimal resolution.
Alignment of the microscope, cylinder axis, and gravity
were crucial and were better than 0.5 . The digitized im-

ages had a resolution of about 1 pm per pixel. A sample
image is shown in Fig. 2. Photos of static menisci, where
the interface shape is well known, were used to calibrate
the smallest distance from the contact line where the im-

age of the interface shape was undistorted. The inner
cutoff distance is sensitive to the details of the back light-
ing, and an optimal set of lighting parameters was estab-
lished so that all the data for r & 20 pm from the contact
line were usable.

Transformation of the data into polar coordinates suit-
able for comparison with theory involved finding the con-
tact line position and correcting for misalignment of the
pixel columns with true vertical and for geometric distor-
tions. By combining data from five images, we formed
data sets containing 3000 points. Our techniques gen-
erated a more accurate and complete set of data than in-
terference techniques [10].

We compared the experimental measurements of the
slope to the local form of the mathematical solution de-
rived using (1) as a boundary condition [9],

FIG. 2. A typical image. The white row of pixels represents
the location of the edge of the tube and the interface as deter-
mined by image analysis.

r

0(r) =g ' Ca In —+f(r/a) —roo,
L

where

rop=g '(Ca lna/L) . (3)

Here, a denotes the capillary length, da/pg, where g is
the gravitational constant and f(r/a) represents the con-
tribution dependent upon the geometry of the system, de-
pending explicitly upon the parameters coo, a/RT, and a,
RT denoting the outer radius of the Pyrex tube [9]. The
only unknown in (2), L, was determined using least-
squares minimization.

Shown in Fig. 3 are typical fits for two different values
of a. The overall agreement with the theory is excellent.
When the errors on the individual data points are taken
to be uniformly ~ 1.0 the reduced g values are typical-
ly about 1. Data are also presented in the region 10
pm (r & 20 pm, which systematically deviates from the
fit; however, we have reason to believe, as stated above,
that these data contain distortions introduced by optical
effects. Note that the slope changes most rapidly as the
contact line is approached. This is the effect of the rela-
tively large size of the viscous forces acting on the inter-
face shape in this region, represented by the first term on
the right-hand side of (2). This term constitutes 95% and
97% of 8(r) within the region r & 50 pm, for a =70' and
120, respectively. Thus, our measurements lie just a lit-
tle outside the region where the interface is free from the
geometry dependence represented by the last two terms in

(2).
A further consequence of this comparison is the experi-

mental determination of L as a function of contact line
speed U. The values of L determined over our entire suite
of experiments are summarized in Fig. 4. To within ex-
perimental error, L is independent of a. The relatively
large uncertainty in L at a given value of U results in an
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FIG. 3. The dependence of the slope of the interface 0 on the distance from the moving contact line r for two different values of o.
The solid line is the fitted theoretical curve. Also plotted below each case is the difference between the measured value of 0 and

theory, 3,0. The solid curve represents a running average over 5 pm. In both cases, no systematic deviation is evident except in the

region 10 pm & r & 20 pm and the "spike" at about r =80 pm for a =70 which is due to dust in the microscope.

uncertainty of less than + 1' in 8(r), a direct conse-
quence of L appearing only within the logarithm and the
function g. Thus, our measurements represent a signifi-
cant data set establishing the validity of (1) for this par-
ticular material system.

Our approach to quantifying the wettability of a ma-
terial system under dynamic conditions can be contrasted
to the usual procedure found in the literature. Usually
the "apparent contact angle" is determined over a range
of contact line speeds [4]. The apparent contact angle is

the contact angle formed by the static meniscus shape
which best approximates the shape of the meniscus far
from the contact line under dynamic conditions. The
word "apparent" refers to the fact that it it not an "actu-
al" slope at a particular position on the meniscus. For
our experimental geometry, it can be shown that the ap-
parent contact angle is coo. It is of fundamental impor-
tance to note that (1) implies the apparent contact angle
is not a material property. This is a consequence of the
appearance of the capillary length a in (3). Hence, the
usual approach of characterizing dynamic wettability
does not use a geometry-free parameter. Furthermore,
Eq. (3) can be used to extract the material property
L(U), for a particular material system, only after the va-

lidity of (1) has been established by measuring 8(r) as
r 0. A materials characterization cannot be achieved

by restricting measurements of the shape of the meniscus
to the region far from the moving contact line. This
problem can be further elucidated by considering the case
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FIG. 4. The value of the parameter L for the suite of experi-
ments.

of How through a capillary tube, by far the most common
geometry used for measuring the apparent contact angle.
In this case, the apparent contact angle coo is the contact
angle formed by a spherical-cap-shaped meniscus. For
material systems in which the validity of (1) has been es-
tablished, L(U) can be determined using the expression
Mp=g (Ca lnRT/L ), where RT denotes the inner diame-
ter of the capillary. Here, the dependence of the ap-
parent contact angle on the geometry is evident by the
presence of RT.

Our results have implications concerning the physics
governing the dynamics of the Auids in the immediate vi-
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cinity of the moving contact line on the microscopic
length scale. The strongest conclusion is that whatever
the physics, it must produce an interface shape with slope
obeying (1) away from the immediate vicinity of the con-
tact line. As discussed in detail elsewhere [9], various
mechanisms are consistent with (1), including a plethora
of models resulting in viscous fluids slipping at the sur-
face of the solid very close to the moving contact line as
well as models assuming the presence of a thin film of
liquid on the solid surface [7,111. For example, two pa-
rameters are introduced in the case of the slip models: a
slip length Ls and the "actual" contact angle 8„,(both
may depend on U), related to L by 8„,=g '(Ca
x]nLs/L). This relationship represents the extent to
which Lq and 0„tcan be determined using our "macro-
scopic" measurements. However, from this we can con-
clude that either 8„tand/or Lv must depend upon U, for
if they were both independent of U, implying 0„t=0for
our material system, then the above relationship implies L
is independent of U, which is inconsistent with Fig. 4. By
further demanding that 0„tmaintain its static advancing
value under dynamic conditions, a common assumption
supported by recent molecular dynamics simulations [12],
again implying 0„t=0for our material system, then
Lg=L. Figure 4 can then be used to determine the
values of L& at various values of U. Here, the relatively
large experimental uncertainty in L results in a large er-
ror in the prediction of L~. Finally, it is of interest to
note that the apparent contact angle, to the accuracy of
our experiments, follows a power law in Ca of the form
run=(296' ~4')Ca — over our entire range of
Ca. However, we note that (3) and any U-dependent L
imply that the apparent contact angle cannot follow a
power law in Ca. The power law we observe is a conse-
quence of a combination of the finite accuracy of our ex-
periments and the weak dependence of L on U in Fig. 4.

In summary, a significant set of data has been present-
ed which substantiates the validity of (1) when moving
contact lines are present for the material system consist-
ing of silicone oil-air-Pyrex and at capillary numbers less
than 10 . This represents both a boundary condition
for determining the dynamic behavior of a macroscopic
fluid body and a constraint on acceptable models of the

behavior of the fluids in the immediate vicinity of the
moving contact line. Measurements were made of the
slope of the interface over a range of r close to the mov-
ing contact line, where viscous forces are important, the
measurement of only the dynamic behavior of the ap-
parent contact angle being insuScient. The material pa-
rameter appearing in (I), L, was determined for U over
the range 1.5 pm/s & U& 350 pm/s. The behavior of L
in conjunction with (I) may be regarded as a fundamen-
tal characterization of the wettability of a material sys-
tem under dynamic conditions. We do not anticipate a
change in the validity of (1) for material systems having
a nonzero advancing contact angle. However, this is the
subject of ongoing research.
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