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Quantum Thermodynamics of Defects in Solids
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A new method for the computation of thermodynamic properties of solid defects is introduced. The
free energy of formation of a defect is written as a simple function of a universal crystalline free energy.
Computed temperature variations of surface energies are found to be consistent with experiment. The
source of the linear term in the low-temperature specific heat of defect materials is revealed. Computed
magnitudes of the linear term are found to be in reasonable agreement with experiment for amorphous
metals and nanocrystalline Pd.

PACS numbers: 65.50.+m, 61.43.—j, 6 l.72.Bb, 68.35.Md

There are many interesting thermodynamic properties
of defects in solids which are quantum mechanical in na-
ture. Examples which are addressed in this paper include
the low-temperature specific heats of amorphous [1,2]
and nanocrystalline solids [3] and the temperature depen-
dence of surface energies [4,5]. Because solid defects are
inherently complex at the atomic level, the usual Monte
Carlo [6] or molecular dynamics [7] methods for comput-
ing defect thermodynamics are of necessity semiclassical
in nature. Here a new method is proposed for the compu-
tation of quantum thermodynamic properties of solids as
a function of the atomistic configuration of defects. We
will see, among other things, that there is a common, sim-
ple explanation for the appearance of the linear term in

the low-temperature specific heats of amorphous solids
and nanocrystalline solids.

I will first derive an expression for Fd(T), the Helm-
holtz free energy to form a defect in a crystal at tempera-
ture T. Thermodynamical properties of interest will then
be calculated from Fd(T), and results tested against ex-
periment.

The approach taken in the derivation of Fd(T) is a
direct generalization to nonzero temperatures of the
equivalent crystal theory [8]. Consider a single crystal at
temperature T and volume per atom V . The subscript
m refers to the minimum in Fig. 1. Now introduce a lo-
cal defect into the crystal. The corresponding Fd(T) is

computed by perturbation theory, where the unperturbed
system is taken to be a single crystal at temperature T
and volume per atom V. The perturbation arises from the
diA'erence in ion core electronic potentials of the defect
solid and the single crystal. By definition,

Fd(T) =F,(T, V)+F~(T, V) —F, (T, V ),
where F, (T, V) is the free energy of the single crystal and
F~(T, V) is the sum of the perturbation series. Now we
know that the introduction of the defect must raise the
free energy of the crystal above the minimum in Fig. 1

(see, e.g. , Ref. [9]). Thus there is a volume V such that

F, (T, V) =0. (3)
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The crystal with this volume V is called an equivalent
crystal, since its free energy is equal or equivalent to that
of the defect crystal. This complicated many-atom prob-
lem has now been formally reduced to the solution of one
equation, Eq. (3), for one unknown, V. It remains to
specify F, (T, V) and F~(T, V).

The crystalline free energy, F, (T, V), can be calculated
from P = —[r)F(T, V)/cI V] T, so that

r V

F, (T, V) =F,(T, V ) —„PdV',
where P is the pressure. A knowledge of the equation of
state, i.e. , the P-V-T relation for the crystal, is all that is
necessary to determine F, (T, V) via Eq. (4). Recently it
has been discovered [10] that the equation of state (EOS)
has a universal form for all classes of solids. Further, it
has been found [11] that this universal EOS has a simple,
analytic form:

3a (T)
P(T,X) = (I —X)exp[ri (1 —X)],

and

Fd(T) =F,(T, V) —F,(T, V ) (2)
FIG. l. Universal free energy function scaled as described in

the text.
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where A'—:[V/V (T)], rl„, (T) = —,
' [(aB/6P)T —I]„„

and B is the bulk modulus. A number of thermal proper-
ties of crystals have been accurately predicted [11] using
Eq. (5) and input data only at a single (reference) tem-
perature. These include the high-temperature isotherms,
the temperature variation of the thermal expansion,
B (T), and ['dB/BP]T.

Combining Eqs. (4) and (5), we find

F, (T, V) =F, (T, V )+AF(T) [F*(a*)+I], (6)

where hF(T) =9B V /rl, a* = g„,(T) (X—
I ), and

F*(a*)= —(I+a*)e ' . We see then that there is a
universal form for the free energy. The scaled functional
F*(a*) is plotted in Fig. I, and one can see that it is the
same as the universal scaled functional for the internal
energy, E*(a*), shown in Figs. 1-4 of Ref. [12]. At
T=O K the free energy and the internal energy are iden-
tical, with AF(0) =hE and a* =(rws —rwsM)/I, where
h, E is the cohesive energy, res is the Wigner-Seitz radius
of equilibrium value rwsM, and /=[DE/12ztB rwsM] '

is a scaling length. Combining Eqs. (2) and (6), we have

Fd(T) =BF(T)[I +F*(a*)]. (7)

Acp, (T) = —T(6 Fd/BT2)

since c,, (T) —= —T(8 F/'dT )y. To determine the form of
Ac, , (T) near T=O K, one would expand it in a Taylor
series in T about T=O K. Of particular interest is the
value of —(8 Fd/'dT )y at T=0 K, because that would
be the coefficient of the linear term in T. From Eq. (7)
we find that at T =0 K

An example value of Fd(T)/AF(T): Fd is shown —in Fig.
I.

Next Eq. (7) will be applied to the prediction of the
low-temperature specific heat, c,, (T), for amorphous met-
als and nanocrystalline materials. For single crystals, the
Debye continuum model has been a good approximation
for the phonon specific heat. It predicts a low-temper-
ature c,, (T) proportional to T . For metals above the su-
perconducting transition temperature T„ there is also a
linear electronic specific heat. However, a linear depen-
dence on T has been discovered [1,13] for amorphous in-
sulators. It was also found [2] that even below T, there
was a linear specific heat for amorphous metals. The
linear c,, (T) and other properties of amorphous materials
have been successfully explained [14] in terms of local-
ized two-level systems characterized by tunneling through
a potential barrier. The microscopic origin of such local-
ized states remains an unsolved problem [15], however.

Here the problem will be revisited via a different ap-
proach. First, the origin of the linear term will be re-
vealed. The difference between the specific heat of a solid
containing defects and the corresponding single crystal is
by definition

6 Fd

i)T, v

d'aF
[1 —(I+a*)e ' ]

dT2

—a*d2
a

gm dT

In deriving Eq. (9), use has been made of the following
crystalline properties [16,17] at T =0 K: dB /dT =0,
drl„, /dT= 3/2—(8/BT) (BB/6P) =0, dV„,/dT =0, and
d V„,/dT =0. The last two equalities follow from the
low-temperature behavior of the volume thermal expan-
sion coefficient e due to lattice vibrations in a single crys-
tal [17]: a —T . Equation (9) can perhaps be made
more transparent by looking at its leading term in the
limit of small a*:

(6 Fd/BT ) =9V~(d B /dT )(X—1) /2+ . (10)

From Eqs. (8)-(10), hc, , (T) will contain a linear term
in T provided a*&0 or, equivalently, VAV„, and A'&1.
Thus any defect in the single crystal would introduce a
linear T dependence in hc, , (T), since any defect would re-
quire [9] that V%V and therefore a*&0 (see Fig. 1).
This suggests why it has been found experimentally that a
linear T dependence in c,, (T) can arise from a broad
variety of sources, e.g. , amorphous structure, nanocrystal-
line structure, impurities, and vacancy distributions due
to, say, neutron irradiation.

The source of the linear term in the specific heat can
thus be understood simply. Now I wish to go further and
estimate the magnitude of the linear term. This will re-
quire an approximate form for Ac, , (T), as suggested by
Eq. (10):

The coefficient of the linear term in c,, (T) at low temper-
atures is given by the coeflicient of T in Eq. (11) evalu-
ated at T =0 K.

The first application of Eq. (11) will be to amorphous
metals. Amorphous metals are thought [18] to be in a
random close-packed structure. Fortunately, there are
radial distribution function data obtained by electron
diffraction [19,20] for amorphous Ni, Co, Ag, and Au.
Nearest-neighbor approximations can provide rather ac-
curate total energies, as can be seen from Table V of Ref.
[8] for the example of surface energies. The data (from
Ref. [201 as tabulated in Tables I and II of Ref. [19]) in-

dicate approximately twelve nearest neighbors and a
nearest-neighbor distance which is of the order of 0.01 A
larger than that for the single-crystal structure. Thus the
defect, which is by definition the difference between the
amorphous and crystalline structures, takes the form in a
nearest-neighbor approximation of a lowering of the crys-
talline atomic volume. In this case the equivalent-crystal
atomic volume and the observed defect atomic volume are
identical [note only the first term of Eq. (20) of Ref. [8]
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TABLE I. Linear term aT in the low-temperature specific
heats computed as described in the text.

Metal

a-Ni
a-Au
a-Ag
a-Co
nc-Pd

—d '8~/dT~
(106 dyn/cm K )

2.58
37'

2. 1
'

6.0'

(10 J/g K')

2.0
1.0
1.6
1.7
390

survives]. This allows for a particularly simple computa-
tion of a*. The experimental values of twelve nearest
neighbors and 0.01 /I increase in nearest-neighbor dis-
tance will now be used to estimate a* for all four metals.
The scaled parameter a* is given immediately [8] by
a* =J2(3/16rr) ' (0.01)/I. Fortunately, there are good
data [21-25] for 8 (T) near T =0 K which allowed
computation of d 8 (T)/dT by numerical differentia-
tion. Now we are prepared to evaluate the right-hand
side of Eq. (11) at T=0 K, which yields the coefficient a
of' the linear term aT in r, , (T). The results are shown in

Table I. The authors of Refs. [19,20] report no c,, (T)
data, but there are data [2,26] taken for a number of
different metals below the superconducting transition
temperature (to eliminate the electronic contribution).
The computed values 1.0 ~ a ~ 2.0 p J/g K listed in

Table I are surprisingly close to all values measured
[2,26] for a variety of metals, which are of order I

pJ/g K .
The second application is to nanocrystalline materials

[3,27]. These materials are polycrystals with crystallite
sizes of only a few nanometers. This leads to a significant
grain boundary component to the material. Since this
grain boundary material has a lower density than that of
the single crystal, V&V, a*&0, and A'&1. Thus from
Eqs. (9) and (10), one would expect a linear term in

hc, , (T) at low T. This is in fact the case, with the mea-
sured [3,28] value for nanocrystalline Pd being a =410
pJ/g K . These data are the specific heat of nanocrystal-
line Pd minus the specific heat of single-crystal Pd, con-
sistent with Eqs. (7)-(11). Presumably this difference
essentially eliminates the (smaller) electronic contribu-
tion to c,, (T). Note this value of'410 pJ/g K is 2 orders
of magnitude larger than those values reported for amor-
phous metals [2,26]. To attempt to understand the origin
of' that large difference, the magnitude of a will now be
estimated for nanocrystalline Pd. First, data for 8 (T)
for Pd from Ref. [25] is numerically differentiated, yield-
ing d 8 /dT . Second, since only a fraction AG of the
material is the grain-boundary component, the right-hand
side of Eq. (11) is multiplied by Ao. Finally, we need to
estimate a* from the atomic structure. Now the local
atomic structure of grain-boundary material in nanocrys- 8 (T)

Fd(T) =hE Fd (a*) .8 (o)
(12)

Note that according to Eq. (12), as T 0 K, (r)Fd/
r)T)y 0, as it must according to the third law of ther-
modynamics. A further test can be found in the T depen-
dence of the surface energy cr(T) By definition, rr(T) is.
Fd(T) per unit surface area formed. Thus with the ex-
ception of those surface phase transitions for which a*
changes significantly, Eq. (12) suggests that

~(T) =8 (T)~(0)/8 (O). (13)

tais is not well understood. Wagner [27] has modeled
the grain-boundary material as a single crystal of the
ground-state structure but having a nearest-neighbor dis-
tance larger than the ground-state value. This neglects
entirely bond-angle distortions. Let us examine his model
within the context of equivalent crystal theory [8]. In Eq.
(20) of Ref. [8], the total energy is divided into four
terms. The inhuence of bond-angle distortion is felt pri-
marily through terms two, three, and four, which are all
zero in Wagner's Model. Table IV of Ref. [8] shows
that, at least for the example of surface energies, the first
term dominates the total energy of the defect in metals.
This suggests that the model of Wagner [27] may be ade-
quate for a rough estimate of the magnitude of a, and so
we will adopt it here. As noted in the preceding example,
in this case the equivalent-crystal atomic volume and the
defect atomic volume are identical. The characteristics

and V/V of the grain-boundary component will de-
pend on the method of preparation, so it is important to
have characterized the particular material of interest.
Here one can follow Wagner [27], who estimates
=0.30 and V/V = (rws/rwsM) =1.30 for the grain-
boundary material of the nanocrystalline Pd of Ref. [3].
These values yield a =390 pJ/g K, which is perhaps for-
tuitously close to the measured value. The main point is
that the computed and measured hc, , (T) values are over
100 times the amorphous metal values. This can be sim-

ply explained as follows. V/V =1.30 corresponds to a
nearest-neighbor-distance increase in the Pd grain-
boundary material of 0.25 A. Earlier, data [19,20] for
amorphous metals were discussed which indicated an in-
crease of nearest-neighbor distance for those materials
of the order 0.01 A. Since near a* =0, I +Fd (a*)
= a* /2, then AaF*(a*) is = 190 times larger for the
nanocrystalline Pd of Ref. [3] than for the corresponding
amorphous metal value. This is roughly consistent with
the ratio of he, , 's shown in Table I.

Finally, an approximate form of Eq. (7) for Fq(T) is

proposed for the purpose of performing simple computa-
tions of free energies of defects in solids. In doing this,
we require that our approximations be consistent with
those of Eq. (11) for d,c,, (T):

'Reference [22].
Ref'erence [23].

'Reference [24].
Reference [25].

This is consistent with data collected by Wawra [29] for
a broad range of materials. In fact, Wawra [4] has as-
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sumed a relation consistent with Eq. (13), as deduced
empirically from the aforementioned data. Wawra's re-
sults I'or o(T) based on Eq. (13) and his measurements
of 8„,(T) are in reasonable agreement with measure-
ments of others [30].

In conclusion, a new method for computing the quan-
tum thermodynamic properties of solid defects has been
introduced. It is a simple, semiempirical method which is
based on the equivalent-crystal approach. A universal
form for the free energy of a crystal was discovered, and
the free energy to form a defect was shown to be a simple
function of the universal form. The predicted tempera-
ture dependence of the surface energies were found to be
consistent with experiment. The source of a linear term
in the low-T specific heat of amorphous materials and
nanocrystalline materials was found simply. Magnitudes
of computed linear terms in the specific heats of amor-
phous metals and nanocrystalline Pd were found to be in

reasonable agreement with experiment.
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