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Sandpile models with randomized updating rules are studied. The randomness is not quenched, but
set dynamically by the dissipation events (avalanches) in the system. Relaxation from fixed updating
rules is here a consequence of medium anisotropy and motivated by the behavior of various driven physi-
cal systems. A one-dimensional sandpile model in which the critical slope at a site varies as the process
proceeds displays self-organized criticality. The model allows one to build in an internal relaxation
mechanism separated from the external driving flux and underlying the noise of the process.

PACS numbers: 64.60.Ht, 02.50.Ey, 05.40.+j, 05.70.Ln

Bak and co-workers have proposed “self-organized cri-
ticality” as a framework to understand the dynamics of
driven, dissipative systems [1]. Attention is focused on
the dissipation of the energy that is fed into the system, in
particular on the statistics of dissipation events (‘“ava-
lanches™). The inherent dissipation dynamics drives the
systems into a ‘‘critical state” with no characteristic
length scale, i.e., with power-law behavior of measured
quantities. The hope was that sandpile models might ex-
plain the frequent occurrence of both 1/f noise (through
the dynamics of the process) and self-similar (fractal)
spatial structures (through the spatial extension of dissi-
pation events) [1]. Reference [2] reviews various numeri-
cal models that display self-organized criticality, in the
sense that the avalanche size distributions and related
quantities are power laws. However, the Bak model and
related models do not and cannot have 1/f noise; they
have a 1/f? spectrum [3-5], whereas 1/f noise can be
found at finite driving rates [2]. Diverse processes includ-
ing earthquakes, turbulence, and economics have been
proposed to possess self-organized criticality, but experi-
mental verification is still lacking for most of the candi-
dates [2]. Further studies on both real and idealized ex-
perimental systems are clearly needed.

In this Letter we propose that the updating rules
should be active parts of the models. Our main argument
is that the updating rules are not distinct from the state
of the system, but are rather intrinsic properties deter-
mined by its structure, which changes as the process
evolves. In the models the rules are always local, the
neighborhood configuration determines what to do next,
but these configurations change continuously. Dynami-
cally changing rules have been discussed before but not
studied in detail [5-7]. Attempts to incorporate inertial
effects in sandpile models utilize dynamically changing
rules [8]. The changing rules in our model are a conse-
quence of the medium through which the process propa-
gates, or more precisely, a consequence of anisotropy in
the structures generated in the medium by the process.
Several general questions motivate this study. First,
these features may be important when designing new
model experiments with possible self-organized criticality.
Second, we argue that the noise of these models should be
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generated by some internal mechanism of the process it-
self, rather than by an external source. Third, we draw
attention to a possible separation of an internal relaxation
mechanism from the external driving force.

These general ideas are investigated through a simple
numerical model in one dimension (ID). The 1D Bak
model did not show critical behavior. A number of 1D
sandpile models with nontrivial dynamics have been pro-
posed [9]. Here the distribution of avalanche sizes or
durations have a quite complicated behavior indicating
that the microscopic rules give rise to new, mesoscopic
length scales [10]. Also in our model there will be build-
ups and subsequent partial discharges of mass and thus a
nontrivial dynamics. However, our algorithm does not
generate any mesoscopic length scale. Perhaps the most
interesting feature of our model is that an internal relaxa-
tion mechanism can be incorporated and studied sepa-

rately.
These models are based on a linear array of cells la-
beled by i, where i =1,2,...,L, and an integer variable

h (i) assigned to each of them; see Fig. 1. Consider the
“height™ A (i) as the number of grains in the column at
site i. A sandpile model is defined by specifying how the
system is perturbed (new grains added), how steep a
slope the system is able to sustain, and how configurations
with too steep slopes should evolve. Conventionally, there
is a wall at /=0 and an edge where grains drop off at
i=L+1. In Bak’s model [1] a grain of sand is added on
a randomly chosen site i, h(i)— h(i)+1. Then all the
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FIG. 1. A 1D sandpile, i.e., a strip of columns of sand. The
dynamics of such a system in its critical state (Bak model) is
also indicated: Any added grain will be transported through the
entire system and will drop off at the right edge.
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slopes o(i)=h(i)—h(i+1) are checked. If a slope
o(i) > o., where o, is some constant, one grain is moved
to the right, h()— hG)—1, hG+1)—hG+1)+1.
This relaxation rule is applied until all slopes ¢(i) < o,
before a new grain is added. Figure 1 shows this system
in its critical state where all o(i) =o0.. Addition of a
grain on a site i will render o(i) > o, so one grain falls
over to site i + 1, and then o(i +1) > o, etc. The added
unit will be transported to the right edge and leave the
system unchanged as it drops off. For many physical sys-
tems such a response where a “signal” (an added grain)
is transported unchanged through the entire system in un-
realistic. The Bak model has the same type of response in
higher dimensions. The nontrivial dynamics found for
d > 1 is attributed to a geometrical effect in a perfectly
ordered system of identical units; see Fig. 1. Toner stud-
ied effects of disorder in grain size and position [11].
However, the disorder was quenched; as the process
evolved a new grain of identical size replaced the old one
at precisely the same position at the surface of the pile.
We find that disorder has a dramatic influence on the dy-
namics of these systems. As a result of the transport pro-
cess the grains in the surface layer are constantly ex-
changed. If there are variations in grain size, shape, or
surface properties, the configurations may vary locally.
But since some configurations are more stable than oth-
ers, the tolerated (critical) slope may vary along the sur-
face. In preliminary experiments with a quasi 1D granu-
lar system we observe these ever-shifting surface con-
figurations [12].

Before we describe the numerical model we will allude
to some relevant experimental situations. Experiments on
sandpiles under different conditions have been reported
[13]. When real sand (and not glass spheres) is used, lo-
cal variations in packing can be expected. A complica-
tion for direct comparison to sandpile models is the non-
local phenomena present in all these experiments
—inertial effects of moving grains and the tendency for
whole portions of a pile to slide. Another process in
which the total force felt at each position is determined
by local configurations varying with the process is the
flow of flux lines [6]. The model is of exclusion-repulsion
type. In addition to the driving force each particle is re-
pelled from occupied neighbor sites. Analogous processes
are the movement of dislocations and the dynamics of
magnetic domain walls [7]. A related process occurs dur-
ing very slow immiscible fluid-fluid displacement influ-
enced by buoyancy in porous media. The growth of the
invading fluid structure is dominated by a single finger
which fragments into a chain of blobs [14]. The trans-
port along this fluid structure under continuous injection
shows long periods with little activity and sudden large
drainage events that alter the blob configuration [15].
Still another process is the flow of water between two
parallel and closely spaced inclined plates [16]. There is
a complex spatiotemporal behavior of the stream width.

Also relevant here is probably the low rate regime (not
reported in detail in Ref. [16]) where the stream tends to
break up into a chain of drops.

Since many driven systems do not have an input that is
distributed over the whole system but rather a flux in
through a point or a plane, we always add new grains at
the left end in our sandpile model. Further, random
deposition represents a complicating additional noise (see
below). The critical (allowed) slope may take on values 1
or 2; when the critical state is reached any avalanche
leaves behind a profile with a sequence of these slope
values. Thus nothing is stated about the internal mecha-
nisms of the propagating avalanche (little experimental
information is available), only the state it leaves the sys-
tem in is specified. The random slopes arise from medi-
um anisotropy and the noise (the choice of slope 1 or 2) is
thus in principle generated by the process. However,
complicated algorithms here will remain speculative until
much more experimental knowledge on various 1D sys-
tems has been collected. We have drawn the two slope
values with equal probabilities and uncorrelated to other
properties of the process. The noise is external to the pro-
cess for both continuous [2,17] and discrete [1] (lies in
the random deposition) sandpile models.

The starting configuration of the system is h(i) =2L
(kept fixed throughout the process) and h(i)=h(i
—1)—( or 2) for i=2,3,...,L. When a grain is add-
ed an avalanche is always initiated. As it propagates a
series of new (metastable, critical) slope values are
drawn, one at a time and regardless of the old values,

Hoew(i)— hpew(i—1)— (1 or 2),
€— €+ [hog(i) — hpew (],

for i =2,3,...,k, where k is determined by mass conser-
vation; see Fig. 2. Here € is the mass difference between
the old and the new profile. The excess mass € is set
equal to 1 as a grain is added and the avalanche initiated.
For each i, € is increased (decreased) by the mass amount
the new profile is lower (higher) than the old one. The

h(i)

old profile

new profile

oldstep\\ __newstep

FIG. 2. The change in the profile of the numerical sandpile
model generated by one avalanche. Steps formed where the
avalanches have been halted are indicated.
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avalanche is stopped abruptly when ¢ reaches 0 [it may
be necessary to reset A (k) to ensure mass conservation].
The profile remains unchanged to the right of k.

It is unlikely that the old and new profiles coincide at
h(k), so steps are formed in the profile; see Fig. 2. We
have not introduced any relaxation of them. First, there
is no obvious way to implement a relaxation (little experi-
mental information). Second, this is a nontrivial model
only due to the steps (see below), and it is therefore
preferable that they are evident in the profile. The mass
conservation is then the only nonlocal component of the
algorithm, and the steps are a direct consequence of it.
We also allow a step at the right boundary. The step
height at i, T(i), defined as T()=h(i—1)—h( +1)
— 3, is found to behave asymptotically with position s as
T(s) s ~'2. This is reasonable since the steps represent
the separation between segments of random walks. Their
scaling behavior ensures that the steps do not introduce
any mesoscopic length.

When the algorithm has been applied for a long
enough time and a step structure built up, the system
reaches a critical state. We find that the avalanche size
distribution D(s) is a simple power law, D(s)xs!'™®
with 7 close to T;see Fig. 3. Mass conservation [17] has
a profound effect on the value of r. For a different model
in which every avalanche conserves mass but moves on a
pure random walk profile (so that the model is nonconser-
vative), we measure T==5. This is reasonable since the
increment of the excess mass performs a random walk,
and the probability for the avalanche to proceed scales
with size as the probability for return to origin,
P(s)exs ™ a=7%, ie., t=a+2=13%. In comparison,
the steps in the main model efficiently restrain the
avalanches and make large ones less probable. The ener-
gy dissipation (loss of potential energy) in our main mod-
el has a 1/f? power spectrum.

“Fluctuation phenomena are ‘the tip of the iceberg’ re-
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FIG. 3. A log-log plot of the probability P(s) to have

avalanches larger than s, as a function of avalanche size s.
6% 108 avalanches were measured and we found P(s) s ™7,
with a=1.515%£0.006. The exponents a and 7 are related,
r=a+2.
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vealing the existence, behind even the most quiescent ap-
pearing macroscopic states, of an underlying world of agi-
tated ever changing microscopic processes [18].” To im-
prove sandpile models as tools for understanding fluctua-
tions and responses we believe it is important to consider
models where the flux (a tunable external parameter) is
separated from the internal relaxation mechanism (an in-
trinsic property of the system), as in some experimental
systems [14-16]. The dispersive nature of our algorithm
allows a slightly modified model to be defined towards
this end. An avalanche with excess mass € =0 is now al-
lowed to proceed, and is only halted when a move result-
ing in negative € is attempted. A series of these “zero
slides” (started without grain addition) constitutes an
“agitated microscopic process” which attempts to
transfer mass to the right in the pile. The transport prop-
erties of the system now depend on the rate y={(number
of grains added)/(number of zero slides). Complex
correlations arise, the flow of, say, a certain mass amount
in the middle of the pile will be very sensitive to y, and
processes with new time scales are generated, as for some
experimental systems [14,15]. Here only some indicative
results on the transport of a single pulse will be given. A
system was driven to its critical state by a y=1 flux, the
flux was turned off, and the system given a mass pulse by
setting A (j) =h(1) for j=2,3,...,n. We then recorded
the transport of this extra mass (with y=0). We used
the number of zero slides necessary for transporting all
the pulse mass out of a system of size L as a measure for
time ¢. This pulse transport is subdiffusive (filled symbols
in Fig. 4). Even a low y value (instead of y=0) after the
pulse addition enhances the transport considerably (open
symbols in Fig. 4). The significant scatter after the sub-
stantial averaging is a consequence of large underlying
variations in the total mass of the system in the critical

log, t
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FIG. 4. A log-log plot of the decay time ¢ for a pulse of
width n=4 at y=0 as a function of system size L (®). Here
t L? with =4.3%0.3. Decay times with y=10"3 (0) and
y=10"2 (O) are also shown, for which we find 8=2.86 * 0.05
and B=2.25%0.03, respectively. Results from 1000 indepen-
dent relaxations were averaged for each data point.
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state. Generally we expect that a critical state generated
by a regular flux will be drained and may break down to
an internal relaxation mechanism if the flux drops to a
low enough value. For the conventional discrete sandpile
models there is no decay independent of the driving force.
If the driving flux is turned off the systems maintain their
configuration forever. Details on low flux transport and
breakdown of the critical state in our model will be given
elsewhere.

A more analytical treatment is difficult since the pro-
cess is strongly affected by its history through the step
configuration. Interestingly, one may consider the profile
dynamics as the wandering of a front with one end fixed.
The wandering consists of specified twistings of front
pieces; see Fig. 2. While Hwa and Kardar [17] assume
that the profile is on the average flat, we find more
dramatic fluctuations.

In conclusion, we have discussed driven systems where
the process continuously modifies the medium through
which it propagates. In a 1D sandpile model we find that
this medium anisotropy leads to a history-dependent pro-
cess with self-organized criticality. An internal relaxa-
tion mechanism separated from the driving flux may be
incorporated, and several regimes are expected as the flux
is tuned.
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