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of Finite-Time Lyapunov Exponent Distributions
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We observe that high-stretch tails of finite-time Lyapunov exponent distributions associated with in-
terfaces evolving under a class of nonturbulent chaotic flows can range from essentially Gaussian tails to
nearly exponential tails, and show that the non-Gaussian deviations can have a significant eA'ect on inter-
facial evolution. This observation motivates new insight into stretch processes under chaotic flows.

PACS numbers: 47.10.+g, 05.45.+b

We investigate probability distributions of finite-time
Lyapunov exponents (or simply stretch distributions) as-
sociated with interfaces evolving within the chaotic tan-
gles of 2D time-periodic vector fields. Such statistics are
relevant, for example, to the mixing process in Auid Aows,
where the stretching of an interface between two species
aA'ects the rate of mixing, and to kinematic dynamo phe-
nomena, where the stretching of Auid elements aAects
magnetic field amplification. In contrast to previous stud-
ies of stretch statistics associated with chaotic Aows

[1-9], we focus explicitly on the high-stretch tails of
these distributions, which are relevant for several reasons.
First, though the high-stretch tails correspond to small
probability values, we find they can play a significant role
in interfacial stretching. Second, for incompressible flows
these tails correspond to the limit of small spatial scales
(small striation width), and thus have direct impact on
the multifractal characteristics of passive scalars in the
small-striation-width regime. Third, the turbulence com-
munity has shown significant recent interest in probabili-
ty distribution function (PDF) tails [10-16],and in a re-
lated context fractal and multifractal characterizations
associated with these distributions (e.g. , see Sreenivasan
[17] and references therein), and it should be of interest
to understand distribution tails associated with nontur-
bulent chaotic flows. We thus perform a high-resolution
numerical study of these high-stretch tails by implement-

ing a dynamic point insertion scheme to maintain good
interfacial covering. Such a scheme allows one to deter-
mine tail behavior right up to the maximum stretch in the
distribution. We observe that high-stretch tails can take
on a range of behavior, depending on the system at hand,
varying from essentially Gaussian to nearly exponential,
and show that the non-Gaussian deviations can play a
significant role in interfacial evolution. Such an observa-
tion indicates the need for sufficiently high-resolution ex-
periments to capture tail behavior when studying stretch
statistics associated with chaotic Aows. The range of
high-stretch tail statistics is understandable in the context
of our recent analysis of interfacial stretching in chaotic
tangles, which shows via a symbolic dynamics construc-
tion how, though one can view the stretch process in
chaotic tangles in terms of products of weakly correlated
events, these events can involve a variety of stretch
scales, spatial scales, and temporal scales, allowing for a
range of tail statistics [18,19].

Two chaotic flows We cons.i—der interfacial stretching
within 2D chaotic tangles, focusing for illustration on two
well-studied oscillating vortex pair Ilows induced by (i) a
pair of equal and opposite point vortices and (ii) a pair of
identical point vortices oscillating periodically in response
to a time-periodic straining field [18-20]. We henceforth
refer to these two Aows as the open and closed Aow, re-
spectively, whose stream functions, in the comoving and
corotating frames, respectively, can be written as

ilr, ,, = — [ln[(x —x„)+(y —y„)]+ ln[(x T-x„)+(y+y„) ]/+sxy sin(2trt)+iir«,

where (x„,y„)represents the spatial coordinates of one of
the vortices in the pair, I is the magnitude of circulation
associated with each vortex, and yt, is the stream func-
tion associated with transforming to the comoving and
corotating frame (which is easily determined from the
fiows) [18-20]. It is well understood that in these period-
ically oscillating vortex Aows one obtains chaotic tangles
(regions in physical space where there is chaotic motion)
[18-20]. The boundaries of these tangles are defined by
the global stable and unstable manifolds of hyperbolic

fixed points in a 2D Poincare section X, which represents
the fiuid at discrete sample times t =n C Z (see Fig. 1).
We consider a particularly relevant interface defined by
the segment of the unstable manifold associated with one
of the so-called turnstile lobes [18,19], as shown in Fig.
l. As the interface evolves under the chaotic Aow, it ex-
hibits the generic behavior of repeated stretching, folding,
and wrapping around itself in a horseshoe fashion, its arc-
length growing exponentially in time [18,19]. Recent at-
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infinitesimal line segment that originates along our inter-
face. Studies of finite-time Lyapunov exponent distribu-
tions conventionally monitor a fixed number of particles,
and thus approximate P(k(n);n) as the percentage of
particles per bin width &, at a given k(n) bin. In con-
trast, we employ a point insertion scheme that maintains
the covering of our interface to within a certain width
(chosen to be about 1% of the mean vortex separation, a
stringent criterion). When neighboring points separate
beyond a cutoff, we insert a new point between them
along the interface, its associated stretch history interpo-
lated from the two neighboring points (accurate for a
dense enough interfacial grid), and adjust the initial arc-
lengths of the line segments associated with the inserted
and neighboring points. The result at the nth cycle is
thus a partitioning of the interface, of total length st,t(n),
into a set of small line elements [Bs;(n)

~ g;bs; (n)
=st,t(n)], each of which has a specified stretch
Ss; (n)/bs; (0) and initial arclength Bs;(0). The stretch
and initial arclength can vary greatly along the interface.
Hence, an improved approximation of P(X,(n);n) is given

by the percentage of the interface's initial arc!ength per
bin width &, in the A. (n) bin:
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where A. ;(n) is the finite-time Lyapunov exponent associ-
ated with the ith line element. Our prescription is similar
to a fixed particle-number scheme with appropriately
weighted initial particle separations, and we checked our
results against this alternative scheme to confirm negligi-
ble point insertion error.

We find for our class of chaotic tangles that high-
stretch tails of finite-time Lyapunov exponent distribu-
tions can range from essentially Gaussian to nearly ex-
ponential. This range of behavior is illustrated by plot-
ting the distributions on a logarithmic scale and then
scaling the vertical axis with division by n (see Fig. 3).
The open-flow tail, which corresponds to a more uniform
stretch profile, is essentially Gaussian by n =10. The
closed-flow tail, which corresponds to a much more
nonuniform stretch profile with isolated sharp peaks of
good stretching localized over small spatial scales and
large temporal scales, appears to be nearly exponential by
n =10. Hence stretch profiles of differing nonuniformi-
ties can engender high-stretch tails of different character;
in particular, highly nonuniform stretch profiles can
entail significantly non-Gaussian tails. Note that the
closed-flow non-Gaussian deviations are significant only
at small probabilities, accompanied by a sizable Gaussian
hump, thus requiring a high-resolution experiment for
detection. By n =10 the transient behavior of the scaled
distributions has decayed considerably (but not complete-
ly), so that, for example, the n =9 and n =10 distribu-
tions lie essentially on top of one another. One can thus
confidently claim in the closed-flow example significant

FIG. 3. Stretch distributions (solid lines) of (a) the open
flow and (b) the closed flow at n 10. The dashed lines are
Gaussian approximations, defined by having the same mean and
standard deviation as the actual distributions.

non-Gaussian behavior on short and medium time scales,
and it seems plausible this behavior persists asymptotical-
ly under the present scaling. Though one might be
tempted to draw a definitive conclusion about the asymp-
totic distribution, we avoid this temptation for two basic
reasons. First, an appearance of convergence can be de-
ceptive in the context of stretch distributions, for the dis-
tributions can vary slowly over long time scales. For ex-
ample, because all particles on the open-flow interface
(except those which intersect the stable manifold) will

end up infinitely far away from the hyperbolic fixed
points, the maximum of the open-flow distribution
asymptotically approaches X=O very slowly, and asym-
metries in the distribution can slowly set in. Hence, com-
paring a few successive iterates for convergence can be
meaningless in the context of distributions. Second,
asymptotic results can depend on the choice of scaling.
Our scaling via contraction of the vertical scale (dividing

by n) is consistent with that of previous investigators
[1,5] (we neglect a small transient term that some choose
to keep in the scaling, e.g., see Ref. [5]). There are, of
course, other possible scalings, such as the one employed
in the central limit theorem, where one adjusts the hor-
izontal scale. For example, here we could expand the
horizontal scale via X, (n) Jn fA, (n) —p(n)l, with t/(n)
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lg(n)/l, (n) -e (3)

2 4 6 8 10
n

]0 20 30 40
n

FIG. 4. Exponents associated with the growth rate of the
closed-Aow interfacial length. Note that the computation of
ls(n) is performed over forty cycles to ensure convergence.
This computation is performed with a ftxed number of points;
we verified that it does not aAect the statistics associated with

the Gaussian approximation lg(n) (since ignoring the high-
stretch tail does not significantly alter the Gaussian approxima-
tion).

the mean of the distribution. DifIerent scalings can give
different asymptotic results; for example, a binomial dis-
tribution asymptotically approaches a Gaussian over any
finite interval of its domain under the above horizontal
scaling, but not under the previous vertical scaling. This
horizontal scaling result (in keeping with the central limit
theorem) is caused by pushing any tail deviations out to
infinity, a wise scaling if one wishes to ignore vanishingly
small probability values. However, in the context of
stretching, it is not obvious that we wish to scale these de-
viations away, since small probability values are associat-
ed with large stretch values. Hence the vertical scaling is

useful, and we are additionally motivated to study the
eA'ects of tail deviations in a scaling-independent frame-
work.

Asymptotic, scaling-independent result. —Since the
non-Gaussian deviations associated with the high-stretch
tail are also associated with small probability values, we

need to ask whether they can have a significant efrect on

the evolution of our interface. This question can be stud-
ied in a simple setting that exploits rapid convergence of
a single scalar quantity, the exponent associated with the
growth rate of the total length of the interface. Let l, (n)
denote the total length of the actual interface, and lg(n)
denote the total length of the interface whose stretch
statist&'es are described by the corresponding Gaussian
approximation. A measure of the relevance of the non-
Gaussian deviations is thus the length ratio lg(n)/l, (n)
For the open-Bow interface the values of ln[l, (n)]/n and
ln[lg(n)l/n are essentially equal over the short-time cal-
culation (up to n =11), as one would expect from Fig.
3(a); hence, one cannot easily conclude that any non-
Gaussian deviations are significant. For the closed flow,
however, Figs. 4(a) and 4(b) indicate for l, (n) and lg(n)
fairly rapid convergence to diAerent stretch rates, indicat-
ing rapid convergence of the length ratio to a time depen-
dence

Hence it appears that the length ratio asymptotically ap-
proaches zero, giving a strong indication in a scaling-
independent context of the relevance of the non-Gaussian
tail in the evolution of the closed-fIow interface.

In conclusion, we find that high-stretch tails of finite-
time Lyapunov exponent distributions associated with in-
terfaces evolving under a class of nonturbulent chaotic
flows take on a range of statistics, from essentially Gauss-
ian to nearly exponential, and that the non-Gaussian de-
viations can play a significant role in interfacial stretch-
ing. A dynamic point insertion scheme allows us to ex-
plore stretch statistics with a truly 1D probe, rather than
a collection of points, thus aA'ording a high-resolution
study of tail behavior right up to the maximum stretch.
The range of high-stretch statistics is a consequence of
the variety of stretch processes that can occur in chaotic
tangles [18,19]; in particular, significantly nonuniform in-
terfacial stretch profiles were seen here to engender
significantly non-Gaussian high-stretch tails.

This material is based upon work supported by the Air
Force Qftice of Scientific Research, the National Science
Foundation, and the Office of Naval Research.

[1] P. Grassberger, R. Badii, and A. Politi, J. Stat. Phys. 51,
135 (1988).

[2] M. A. Sepulveda, R. Badii, and E. Pollak, Phys. Rev.
Lett. 63, 1226 (1989).

[31 T. Horita et al. , Prog. Theor. Phys. 83, 1065 (1990).
[4] F. J. Muzzio, P. D. Swanson, and J. M. Ottino, Phys.

Fluids A 3, 822 (1991).
[5] F. Varosi, T. M. Antonsen, Jr., and E. Ott, Phys. Fluids A

3, 1017 (1991).
[6] R. T. Pierrehumbert, Phys. Fluids A 3, 1250 (1991).
[7] H. D. 1. Abarbanel, R. Brown, and M. B. Kennel, J. Non-

linear Sci. 1, 175 (1991).
[8] J. M. Finn and E. Ott, Phys. Fluids 31, 2992 (1988).
[91 E. Ott and T. M. Antonsen, Jr. , Phys. Rev. A 39, 3660

(1989).
[10) S. Balachandar and L. Sirovich, Phys. Fluids A 3, 919

(1991).
[11]A. Vincent and M. Meneguzzi, J. Fluid Mech. 225, 1

(1991).
[12] Z. She and S. A. Orszag, Phys. Rev. Lett. 66, 1701

(1991).
[13] R. Benzi et al. , Phys. Rev. Lett. 67, 2299 (1991).
[14] J. P. Gollub et al. , Phys. Rev. Lett. 67, 3507 (1991).
[15] E. S. C. Ching, Phys. Rev. A 44, 3622 (1992).
[16] P. Kailasnath, K. R. Sreenivasan, and G. Stolovitzky,

Phys. Rev. Lett. 68, 2766 (1992).
[17] K. R. Sreenivasan, Annu. Rev. Fluid Mech. 23, 539

(1991).
[18] D. Beigie, A. Leonard, and S. Wiggins, Phys. Fluids A 3,

1039 (1991).
[191 D. Beigie, Ph. D. thesis, Caltech (1992).
[20] V. Rom-Kedar, A. Leonard, and S. Wiggins, J. Fluid

Mech. 214, 347 (1990).

278


