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The temporal evolution of global modes is studied, which are time-harmonic solutions of the linear dis-
turbance equations, subject to homogeneous boundary conditions in all space directions. As basic flow
we consider weakly nonparallel three-dimensional shear flows. A necessary condition for the existence of
a global mode is the presence of at least two branches of the local dispersion relation and a location
where they coalesce. It leads to a mode coupling in a neighborhood of that point. To analyze the mode
coupling the uniform asymptotic description of Kravtsov and Ludwig is employed which also yields a

general formula for the global eigenfrequency.

PACS numbers: 47.20.Ft, 47.20.Ky

Global instabilities, which develop as a whole on a spa-
tially inhomogeneous flow, are of great interest as they
often lead to strong limit-cycle oscillations. In the past,
such oscillations have been observed when flow interacts
strongly with solid surfaces, such as in edge tone phenom-
ena [1]. More recently, global instability and associated
limit cycles have been identified in cases where the dom-
inant role is played by a region of local absolute instabili-
ty and not by the boundaries. The most notable examples
in this category are bluff-body wakes, low-density jets,
zonally varying flows in atmosphere, and the dynamo
theory of disklike objects [2-13]. The region of absolute
instability thereby plays the role of “wave maker” for the
entire flow. To date, mostly the temporal instability of
two-dimensional spatially inhomogeneous flows has been
studied [1-11], while in three dimensions only the paral-
lel case has been elucidated [14,15].

Global instabilities in three-dimensional, spatially inho-
mogeneous shear flows have not yet been tackled theoreti-
cally, although they have been the focus of much experi-
mental effort. Cylinder wakes are a case in point where
several variations of cylinder diameter, such as taper and
steps, have been found to yield generic three-dimensional
vortex patterns [16]. The latter very often involve cells of
different vortex-shedding frequency along the cylinder
span, which is clearly a nonlinear phenomenon. In order
to understand the early stages of pattern formation fol-
lowing, say, an initial impulse, we address the problem of
linear global modes in fully three-dimensional situations.

For our study of instability waves in a spatially inho-
mogeneous 3D shear flow, we start for simplicity from the
incompressible Euler equations, linearized around a basic
flow U(y,X). To make the problem amenable to analysis
we assume a weak spatial dependence of U on the
streamwise and spanwise coordinates which is expressed
by introducing the slow variables X; =s&x; (i=1,2) with
ek, ie., U=U(y,X,X,). Here ¢is the ratio of a typi-
cal instability wavelength and the minimum of the
characteristic evolution lengths of the mean flow in the
streamwise and spanwise directions. As a consequence,
the mean velocity component Uj in the cross-stream
direction y is small, of order &. We note that viscous
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effects do not change the analysis in any essential way as
the Reynolds number has to be at least of order £ ™' to be
compatible with the assumption of weak nonparallelism.
Assuming a uniform mean pressure, we can write

uo (7, X, 1) =UQ,X)+uly,X,t),
ma(y, X, 1) =const+r(y,X,1),

X =(X,X7). Here u is the velocity and = is the pressure
disturbance, and uy, mo satisfy the Euler equations and
the equation of continuity. After eliminating r, one ob-
tains a system of linear partial differential equations
(PDEs) for the disturbance velocity,

R(,y, X, Vu(y,X,1) =0, (1)

where u is a three-component vector and R is a 3% 3 ma-
trix operator with variable coefficients. Because of the
weak nonparallelism we can look for a solution in the
form of the geometrical optics expansion (GOE),

u(y,X,1)= ;Oa"u,,(y,X)exple(X)/a]

xexpli(w'+ew )], (2)
subject to the boundary conditions
lu(y,X,0)|— 0 as |y],|X]|— . 3)

Here w'+ew; and @ are complex frequency and phase
which are related to the streamwise and spanwise wave
numbers p; by p={(p,,p2) =V6. Upon expanding R in
powers of ¢ as in [17] one obtains at order O(¢) a homo-
geneous system of ordinary differential equations in y
which depend only parametrically on X,

Ruo=0, |up(y,X)|—0 as |y|— . 4)

In the 2D case, after introducing a stream function, one
obtains for R the scalar Rayleigh operator [18]. The
solution of (4) can be written as ug=Ao(X)eo(;X),
where g is a local eigenmode. This eigenvalue problem
leads to a dispersion relation of the form H(w’,p,X)
=0. In general, the system supports several modes p™
=H" (0", X).
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We now restrict ourselves to a class of unbounded
mean flows, which tend to a uniform flow (with constant
velocity) at |X|— . Hence the dispersion relation at
infinity is a nonlinear PDE of the first order with constant
coefficients. This implies that the wave numbers are
asymptotically identical in all directions as |X|— oo. As
a consequence the homogeneous boundary conditions (4)
cannot be satisfied by any mode p’(X) alone and the
dispersion relation must have a branch point [2] for a glo-
bal mode to exist. A branch point in the (X,X3) plane
may be found where the necessary conditions for the es-
tablishment of the implicit function theorem are not met.
Hence, the necessary conditions for its existence are
H=H,=0 in an anisotropic medium. In the isotropic
case, where H=H(w,|pl,X), the condition reduces to
H=H,=0. Noting that the dispersion relation is a PDE
of the first order but not the first degree for the function
0(X), we have to require pyx,=payx, in order to have a
continuous phase. This equality also assures solvability of
the system H =H, =0.

The existence of a branch point, however, violates the
assumptions of the high frequency ansatz (2) since it is
easily shown by differentiation that px, and P,x, become
infinite at a branch point and the GOE breaks down. In
order to have bounded wave number derivatives at a
branch point, i.e., a coalescence point of two solution
branches, we need to require in the isotropic case

H=H,,‘=0, [)1,\/23[)2,\/‘, Hx=0. (5’&)

For an anisotropic medium the necessary conditions take
the following form:

H=Hp=0, Pix,=Px, H,\'|=0‘ (Sb)

In (5), Hx,=0 follows from the boundedness of p;, at a
point where H,=0. Since p\x,=pax,, Hx,=0 follows
automatically. The analogous conditions for the 2D case
were derived for the first time by Pierrehumbert [2] and
Bar-Sever and Merkine [10].

We now consider the influence of the dispersion rela-
tion singularities (5) on the nature of the solution. For
simplicity we suppose that the system (5) has one and
only one solution, (w’,p’,X") or (@',|pl’,X"), respective-
ly. In addition, as X approaches X', we have to require
that H, =0(H,). Since one can always find a curve Lo
along which exp(6/¢) does not decay, one has to require
that A(X)— 0 as |X|— oo, X € Ly, in order to satisfy
the boundary conditions (3). Substituting the expansion
(2) into (1) one obtains at O(g)

def
Ru; =~ (V,R-Vug— A{oRugo+M} =Nug,  (6)

where VpR is a block vector with ith component 8R/dp;,
and M is the block matrix M =13, ;= 2R, pixPo.
Applying an orthogonality condition to the last equation
one obtains the so-called transport equation for the am-
plitude A4(X),

71(X)-VA+7y,(X) A4 =0, @)

where - denotes the scalar product. The coefficients 7;
are defined as

71 (X) =f_ww6"VpR<Pody ,

72(X)=f~mly6k {VpR - Voo + M+ @ R yeol dy (8)

Ey;(X)+w|y4(X) N

where w¢§ is the solution of the homogeneous adjoint
problem and the asterisk denotes Hermitian conjugation.
Using identities similar to those derived by Weinberg
[17] one can write

N0 ==Voh [ wiRupody. ©)

Hence, the coefficient of VA is proportional to the group
velocity.

To satisfy the homogeneous boundary conditions we
had to require the existence of the coalescence point X/,
which led to the divergence of Vp. We were able to avoid
it by choosing w =, but now we are faced with another
type of singularity which is again brought about by the
coalescence of wave vectors associated with different
modes. This is a common situation which leads to mode
conversion, and a breakdown of the GOE near X'.

Let u;(i=1,2) be the eigenvalues and ¢; the eigen-
functions of the matrix R: Re;=u;p;. The normal
modes of interest here correspond to the zero eigenvalues
u; =0 (the respective vectors ¢; are referred to as zero
vectors [19]). Since the determinant D of the matrix R is
equal to the product of its eigenvalues, the dispersion re-
lation may be written in the form D =u,u;=0. For one
of the normal modes labeled by the subscript 1 the eikon-
al equation reduces to u(r,p) =0. Let 6,(r) be the solu-
tion of this equation and p' =V#,. In the leading approx-
imation the field is proportional to ¢y, i.e., ug=Ag ¥,
whereas in the first approximation, the field should con-
tain other components. We represent the first approxi-
mation field as the sum u; =A,,¢,+ A2¢,. Premultiply-
ing the equation for u; by w¥ one obtains A ~pu;
X[[Zwy? Ndyl|, =, were N is defined by (6). With
the degeneracy u,(p")— 1, (p') =0, one finds A, oo.
Hence, the GOE leads to an infinite amplitude at the
point (@’,p’,X"’) and the location of the singularity is en-
tirely determined by a dispersion relation and by the
necessary conditions for the existence of a global mode.
The physical reason for the singularity is of course the
neglect of mode coupling at X'

To obtain a finite amplitude at X' we adopt here the
method of ‘“‘vertical eigenmodes and horizontal rays”
[20,21] which is a combination of the Kravtsov and
Ludwig [22,23] and the Bretherton [24] approaches
(another possible method was described by Budden [25]
and Kravtsov [26]):
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u=expl—iwt +6(X)/el X [¢"B, (., X)WV (e~ 2p(X)A) +&"H2C, (), X)V'(e ™ 2p(X);M)]. 10)
n=0
The function V(- ) satisfies the following equation:
V') +0— 50 v(n) =0, o=o'+soi+ -, n=&""p(X). (1)

Here p(X,X3) is an unknown function and A a constant.
The choice of scaling for n is motivated by the results of
papers [8-11,13]. To satisfy the boundary conditions (3)
we are looking for a solution ¥ (57) which is quadratically
integrable on the infinite interval. It is well known that
this is only possible if V(1) is an eigenfunction of (11)
with eigenvalues A, =n+ 4. The corresponding eigen-
functions can be expressed in terms of the nth Hermite
polynomial. For the following, we choose the most unsta-
ble eigenvalue n =0 [10,11]. Substituting (10) into Eq.
(1) and using (11) to eliminate V" leads to a sequence of
equations in ascending order of &”V and £"*'2V". After
multiplying the equations obtained at O(&"*'/2) by =+ p/
2 and adding the O(g") equations one obtains at leading
order

R((6x *+ +ppx):(6x = L ppx)) [Bot +pCol =0. (12)

It follows from Eq. (12) that the functions s = =6+ § p?
satisfy the dispersion relation (5). Once the modified
phases s * are found, one immediately has 6=+ (s*
+s57); $+p?=(st—s57). The solvability conditions at
order O(¢g) then yield the improved transport equations
[23] for 4 *,

X)) VAT +y XD F A F)p ly T (X)-Vpla*
=0, (13)

FIG. 1. The real part of u(X) [Eq. (10)] representing the
global mode for the particular dispersion relation (see text).
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I where Bo* +pCo=4 * (X)es™ (y;X). To obtain ex-

pressions for ;= (X) one simply has to add the super-
script ““ = to ¥;, ®o, and y™* in (8).

So far an important feature of the problem, i.e., the
zero group velocity at X’ has not been used. Making use
of the conditions Hp=0, Hx=0 one can expand the
dispersion relation and consequently the coefficients in
Eq. (13) around X' and find a local solution. To obtain a
bounded solution for the envelope 4(X) at X’ we have to
require

w|=—X0[73(X)/74(X)]x: (14)

Hence the global mode frequency is solely expressed in
terms of the local instability characteristics in the vicinity
of the saddle point X'. In more intuitive physical terms,
the local oscillator at X’ which experiences the least
losses to “‘mismatched” neighbors assumes the role of
“wave maker” for the entire flow. It follows from
(11)-(14) that in the vicinity of the absolute instability
region [2,7,11] | X —=X'|~0(¢™"?) the envelope is de-
scribed by the linear Ginzburg-Landau equation with
variable coefficients. This expands the results of papers
[2,10,11] to 3D flows.

In order to visualize the spatial structure of a 3D
global mode we take an arbitrary dispersion relation
D(w,p,X) and expand it about o’,p’,X’. Because of (5),
we are left with the quadratic terms as the first approxi-
mation to D(w,p,X). Solving this PDE for the phase,
one obtains the function

P(X) =(a|x|2+a2x|x2+a3xz2)'/2 )

where the a; are constants. The global mode u(X) given
by (10) is plotted in Fig. 1, for some arbitrary taken
coefficients. We note that the dispersion relation can be
written in a form of Hamiltonian system. For a conserva-
tive system it is known that chaotic motion of rays can
occur in the framework of the geometrical optics ap-
proach. If this carries over to nonconservative systems, it
may open an interesting perspective on the essential
differences between ‘‘turbulence” in systems with two
wave-propagation directions as opposed to one.
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