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The parameter space of the Henon map is reported to contain a regular structure-parallel-to-structure
sequence of shrimp-shaped robust isoperiodic domains. They appear densely concentrated on a neigh-
borhood along a main a direction, extending across both orientation-preserving and -reversing domains.
There is also a secondary P direction, roughly perpendicular to a very dense "foliation of legs" emanating
from the isoperiodic domains. Familiar bifurcation phenomena observed in unimodal maps correspond
to particular cuts along the P direction. The a direction is rich in new phenomena. The topology along a
is conjectured to be typical of bimodal maps.

PACS numbers: 05.45.+b, 02.30.+g, 02.90.+p

A standard way of investigating the dynamics of phe-
nomena common in many scientific disciplines such as
physics, engineering, biology, etc. is by modeling them ei-
ther with diA'erential, diA'erence-diA'erential, or pure
diAerence equations. Such models contain two diA'erent

classes of quantities: variables and parameters. Familiar
concepts such as phase-space, bifurcation diagrams, or-
bits, attractors, return maps, basins of attraction, mani-
folds, etc. are nowadays routinely used to extract infor-
mation of dynamical systems from the variables ruling
the dynamics [1,2]. Much valuable information might
also be obtained, however, by studying the dual space of
parameters, particularly regarding certain sets of param-
eters for which dynamical systems behave similarly with
respect to one or several properties of interest such as, for
example, periodicity, topology of attractors, basins, return
maps, etc. While there are several tools to extract infor-
mation from the space of variables of dynamical systems,
relatively few exist to obtain them from the dual space.
The purpose of this Letter is to introduce and apply a tool
that was found useful to investigate the space of parame-
ters: isodiagrams. Isodiagrams are simple generaliza-
tions of bifurcation diagrams. A bifurcation diagram [2]
of a generic dynamical system, say x, + &

= fq(xt ), where X

represents collectively one or several parameters, is a plot
of one component x, as a function of one of the parame-
ters k. Although bifurcation diagrams are plots of one of
the variables, the information that is really of interest in
them is the number of diAerent branches that appear as a
function of k or, in other words, the periodicity as a func-
tion of X. If one uses diAerent symbols, e.g. , diA'erent

shadings or colors, to represent diN'erent periods, the in-
formation contained in the x, axis can be compressed into
a single line. In other words, by using colors the inforrna-
tion contained in 2D bifurcation diagrams can be fully
compacted into a 1D polychromatic line. The remainder
of this Letter shows how this idea may be used to uncover
the structure and useful information contained in the pa-
rameter space of dynamical systems depending on more
than one parameter. As far as the author knows, the

method and the results reported here have never been
presented before.

The problem considered is as follows: How do the sets
of parameters characterized by a common property, here
periodicity, organize themselves in the parameter space of
dynamical systems having codimension higher than 1?
As a representative example of phenomena also observed
in several other systems, this Letter reports results spe-
cific for the familiar two-parameter diAeomorphism of
Henon [3],

H, b(x,y)~(a —x'+by, x),
obtained by considering the simultaneous variation of
both parameters involved. The results are a brief sum-
mary of the topology that emerges from a discussion of
isoperiodic diagrams contained in two long papers that
will appear elsewhere and which concentrate on computa-
tional [4] and more mathematical aspects [5].

The parameter space of the Henon map is found to be
organized in a very regular way. Almost all stable com-
plex dynamics occur within or close to a set V of parame-
ters which has quite sharp and robust borders well ap-
proximated by line segments or simple curves over ex-
tended ranges. Embedded in V one finds complicated
pleopodic shrimplike structures as shown in Fig. l. Every
shrimp consists of a main body of periodicity k plus an
infinite succession of adjacent domains having periods
k &2", i.e., following a period-doubling route to chaos
from the main body k. For example, the structure at the
center of Fig. 1 contains a main body of period 8 (repre-
sented by the grey shading), a period-16 region (repre-
sented by the thin black adjacent region), followed by a
full 8 & 2" cascade that due to the scale of the picture can-
not be seen anymore. Further magnification uncovers
shrimps of higher and higher periods in this domain ap-
pearing parallel to each other. A striking regularity
found is that essentially all isoperiodic shrimps appear
aligned along a very particular direction, say, a. As seen
in Fig. 1, the pleopodic structures appear organized in a
distinctive structure-parallel-to-structure way, thereby
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FIG. I. Isoperiodic shrimps embedded in a chaotic sea along
a portion of the direction a. Numbers refer to main periodici-
ties k. Note the two "oA-diagonal" symmetrically located
shrimps of period 11.

FIG. 2. The direction p. The structure coming down in the

upper middle part of the figure is the period-3 window. Phe-
nomena along p essentially coincide with that along b =0, the
"codimension-one" line.

defining several further privileged directions. The direc-
tion a is defined by the line b = —0.583a+1.025, ob-
tained from a least-squares fit to points located roughly at
the center of the main body of many shrimps. A portion
of a can be seen in Fig. 1. A more extended view of this
direction appears in Fig. 2. In fact, Fig. 1 is a magnified
view of a domain around the 8-shrimp marked in Fig. 2.
The intersection of a with the middle line of crisis m con-
necting the vertices at b =0 and b =b* occurs at
b = —0.059. . . . From Fig. 2 one recognizes two sets of
"parallel" legs emanating from the 8-shrimp. The circles
around both legs going down are used to indicate that two
thin legs of periods 8x2" are born at the shrimp, extend-
ing all the way down from it. As one moves away from
the central part of the shrimp the legs get thinner and
thinner. As might be guessed from the notation, both
encircled 5's correspond to legs of periods 5x2" originat-
ing from a shrimp along a located way above. The same
is true for the two encircled 7&2" legs. Both 7&2" legs
inside squares originate from a difI'erent period-7 shrimp.
In fact, the dense "foliation" of roughly parallel lines
seen to the left and to the right of the period-8 shrimp in

Fig. 2 originates from shrimps located almost exclusively
along a, for b ) 0. There is a distinctive direction P "per-
pendicular" to all legs going down. There is also a fur-
ther direction, defined by those legs going to the right.
From Fig. 2 one recognizes that most of the dynamics
known for unimodal maps (exemplified here for the quad-
ratic map along b =0) corresponds to "traversing the foli-
ation of legs" coming down from shrimps located in the
(orientation-reversing) domain above. The apparently
random way with which periodic windows appear embed-
ded in the chaotic domain along b =0 is in fact a conse-
quence of the ordering of shrimps along a, an important
fact that does not seem to have been noticed before.

Figure 3 shows a larger portion of the parameter space
while Fig. 4 shows essentially the full domain of parame-
ters corresponding to bounded orbits. Figure 2 is a
magnified view of the region b* & b & 0 around the crisis
line m in Fig. 3 while Fig. 3 itself is a magnification of a

portion of Fig. 4. Figure 3 shows shrimps of main periods
7 (8), 5 (A), and 7 (E) from where the boxed 7, circled
5, and circled 7 k &2" legs, respectively, shown in Fig. 2

originate. Shrimps of all higher periods k can be found in

V by zooming further and further in finer domains
around a. Such structures, however, get very small

quickly. In particular, note that the 8-shrimp of Fig. 1 is

the only one still discernible on the scale of Fig. 2. Figure
3 also contains two salient features: a "nose" with a tip at
(2,0), formed by the intersection of the u and m lines,
and an "antinose" with a tip at (a*,b*)=(1.8219. . . ,
—0.0824. . . ), the intersection of the I and i lines, where
degenerate tangencies occur.

The set V of pairs (a,b) for which orbits of (xo,yo)
remain bounded to finite attractors is the union of two
sets: (i) the set P, containing many topologically paral-
lel, not unique, mildly overlapping, robust, isoperiodic
shrimplike subsets PI, of main periodicity k and secon-
dary adjacent periodicities kx2, n =1,2, 3, . . . , and (ii)
the set C, containing all chaotic orbits. Sitting on the 2

accumulation border of the big 1 x 2" subset is the
domain V, delimited schematically by the shading rough-

ly at the center of Fig. 3(b). V is the union of a chaotic
background, including most of the set 8, and the majori-
ty of the autosimilar isoperiodic subsets Pp described
above. Similar sets V appearing sometimes as a collec-
tion of nonconnected domains were found for several typi-
cal physical systems that we investigated, including two
ODEs [6]. Therefore we conjecture similar domains V
containing an infinite number of complex isoperiodic
structures ordered in particular ways to be a characteris-
tic topological feature present in the parameter space of
physical systems of codimension higher than 1. The
shrimp-shape of the Pk, although occurring frequently in

the systems investigated, is not "universal. " The specific
ordering with which the several PI, appear embedded in

V is, however, highly symmetrical and is the same for
large classes of physical systems. At the many borders of
the shrimps, small inaccuracies (noise) in choosing pa-
rameters are enough to drastically change final behaviors.
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FIG. 3. (a) The Via Caorica V, delimited by the white re-

gion; (b) schematic view showing the sharp vertices at (2,0)
and (a*,b*), the a direction with the structures-parallel-to-
structures and the P line, signaling the "foliation" of legs (see
text). The main period of shrimp A is 5, of 8 and E is 7, and of
D is 6. —~ refers to parameters for which generic orbits are
not bounded. Similar colors denote domains of similar periodi-
city.

Note that by following diA'erent routes in the space of pa-
rameters it is possible to see many "new" routes to chaos.

Shrimps can be found over extremely wide param-
eter domains, stretching from orientation-preserving to
orientation-reversing domains. Most of them consist of
four main thin legs made of an infinite number of con-
tinuous and smooth segments resulting from intersections
with legs from other shrimps as seen from the figures. At
the relatively small intersections the periodicity of both
legs is stable and the one that "dominates" on the figures
depends on the initial conditions used to follow the orbits
(multistability). The dotted appearance of some legs in

the figures reflects only a limitation of the printing device
used. The a direction is valid for 0.94~ a ~ 1.86 which
covers the range —0.059 ~ b ~ 0.48, containing all of
the u line and almost the entire m line. All shrimps ap-
pear densely confined to two strips roughly parallel to the
a line, roughly delimited by the line u and an inner curve

FIG. 4. (a) The domain 0 ~ a ~ 3 (horizontal axis)
—I ( b ( I (vertical axis). (b) Magnification of the domain
1.2 ~ a ~ 1.8 and 0.0~ b ~0.32. Colors and symbols are as in

Fig. 3.

located at about the same distance between a and u, but
to the left and "parallel" to e. While shrimps are
predominantly located in the b & 0 region, it is possible to
find an infinity of them between the nose (b =0) and the
antinose (b =6*), i.e., for b & 0. There is no evidence of
shrimps below b . To the left of the region containing
the Pi, shrimps one finds the direction P. By moving
parallel to P one finds the smallest possible variation of
the bifurcation pattern over extended parameter domains.
Bifurcation diagrams along P, in contrast to what hap-

pens elsewhere, preserve monotonically their structure
and relative widths, reflecting the way in which the paral-
lel legs align themselves in that region and along e. The
experience already accumulated from studies along P
(particularly along b =0) has been frequently used as a
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guide to "guess" what happens when bWO. However, as
shown here, the "big action" occurs along a. The dynam-
ics along a determines and slaves that observed along P,
not the contrary. As seen from Figs. 2 and 3, the domain
V has quite sharp borders between bounded attractors
and the attractor at —~, borders which are well approxi-
mated by simple curves over extended ranges of parame-
ters. The upper border indicated in Fig. 3 is roughly con-
tained between (0.973,0.560) and (2,0), the middle bor-
der between (2,0) and (1.8219, —0.0824), and the lower
border between (1.8219, —0.0824) and (2.328, —0.441).
There are other sharp discontinuities at (0.949,0.677)
and (2.328, —0.441) similar to those at (2,0) and
(a*,b*)

By properly changing both parameters simultaneously
it is possible to navigate over extended domains without
ever changing the periodicity of the attractor. It is also
possible to find paths along which the periodicity does not
change or changes just a small number of times and
which connect several shrimps. In fact, it is possible to
recognize a complex network of paths which allow one to
move around shrimps of all periodicities without ever
needing to cross the vast surrounding chaotic sea. Such a
network is of interest for "controlling" chaotic physical
systems [7], here through macroscopic changes of param-
eters along stable orbits. These two characteristics are
very important for experiments. The diagrams presented
show which parameter(s) to choose in order to change
from, say, a given initial stable periodic behavior to a
final desired one on a single move. They show how to
move to avoid chaos, if this is at premium. Few and pre-
cise moves are interesting features for controlling behav-
ior of physical systems.

Isoperiodic diagrams help to identify and unify behav-
iors typical of higher-codimensional systems that are not
easy to recognize from bifurcation diagrams. An exam-
ple involves reports in the literature of some "new routes"
to chaos occurring in families of maps (especially some
maps with discontinuities) and obtained by considering
the dynamics along particular one-parameter cuts of
higher codimensional systems. Such interesting reports
provide a glimpse of the complicated way in which "gen-
eralized" shrimps occur in high codimension and that
might be conveniently explained with isoperiodic dia-
grams. The diagrams are also helpful in the study of
non-Markovian processes simulated via discrete dynami-
cal systems [8].

This study generates a number of interesting questions,
such as the following: Although found for several sys-
tems, how generic is the topology reported here? Why do
shrimps tend to appear essentially aligned along specific
and simple curves? What is the proper "Sarkovski-like
ordering" [2] for full shrimps, not intervals? What is the
generic pattern behind the highly symmetrical ordering

of shrimps evident in Fig. 1? What is the mathematical
reason for it? Why do 2" cascades always appear orient-
ed in the same way? Is it possible to app]y/gen-
eralize results of Milnor and Thurston [9] for full
shrimps? Is a two-symbol grammar enough to uniquely
label all trajectories of the Henon invariant set through
primary homoclinic tangencies over all the space of pa-
rameters? Is this the simplest method of characterizing
the dual space? Are there "generalized" structures em-
bedded in multimodal higher-codimensional systems,
which "collapse to shrimps" in codimension two? Why
do shrimps exist on both sides of the b =0 line, the line
thought to separate markedly different physical behav-
iors? All this and certainly more remains, however, to be
in vestigated.
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