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We present the one-loop helicity amplitudes with five external gluons. The computation employs
string-based methods, new techniques for performing tensor integrals, and improvements in the spinor
helicity method.

PACS numbers: 1 2.38.8x

Calculations beyond the leading order in quantum
chromodynamics are important in refining our under-
standing of known physics in present-day and future col-
lider experiments, such as the Tevatron or the SSC and
LHC. In jet physics, next-to-leading-order calculations
are important in curing several deficiencies of their
leading-order counterparts: the strong spurious depen-
dence on the renormalization scale, the lack of sensitivity
to the jet resolution parameters, namely, the minimum
transverse energy and the jet cone size, and the absence
of a warning about dangerous infrared logarithms. The
one-loop corrections to matrix elements for 2 2 pro-
cesses in QCD, a key ingredient of the next-to-leading-
order calculations of inclusive-jet and two-jet cross sec-
tions and distributions, were computed by Ellis and Sex-
ton [1]. To go beyond these cross sections, whether to
higher orders for two-jet cross sections, or to next-to-
leading order for three-jet cross sections and distribu-
tions, requires the computation of the one-loop correc-
tions to the 2 3 matrix elements. At hadron colliders,
the QCD coupling tt„and the manner of its running, can
be extracted from purely hadronic processes by compar-
ing three-jet production to two-jet production, at various
center-of-mass energies. The presence of infrared loga-
rithms in both of these quantities means that this cannot
be done sensibly unless both quantities are known to
next-to-leading order.

We present here the one-loop matrix elements with five

external gluons, which are the hardest part of a 2 3
calculation if a traditional diagrammatic method is used.
We have performed the calculation using the string-based
methods developed in Ref. [2] as more efficient tools for
one-loop calculations with external gluons. The rules
presented there were derived by taking the infinite-
tension limit of an appropriately constructed heterotic
string amplitude. The structure of the rules can also be
understood in conventional field theory [3], and the appli-
cation of such methods to a calculation such as the
present one does not require any knowledge of string
theory. (It turns out that it is possible to construct a set

of rules yielding more compact integral representation of
gluon amplitudes at intermediate stages than would
emerge from a straightforward application of the rules in

Ref. [2]. This alternate set of string-based rules will be
discussed elsewhere. )

In the string-based method, one first decomposes the
n-gluon amplitude, depending on the external momenta,
helicities, and color indices k;, X;, and a;, into sums over
certain permutations of color factors, times partial ampli-
tudes, in analogy to the helicity [4,5] and color [6]
decomposition of tree amplitudes. At one-loop order in

an SU(N) theory, one must also sum over the difTerent

spins J of the internal particles; this takes the following
form when all internal particles transform as color ad-
joints:

where

Gr„~ (1)=N Tr(T" . T'"),

Gr„,,(1)=Tr(T" T" ') Tr(T" . T'"),

S„ is the set of all permutations of n objects, and S„., is
the subset leaving the trace structure Gr„., invariant.
The T' are the set of Hermitian traceless N xN matrices,
normalized so that Tr(T'T ) =8' . For internal particles
in the fundamental (N+N) representation, only the
single-trace color structure (c=1) is present, and it is
smaller by a factor of N. We take in each case a spin-J
particle with two states: gauge bosons, Weyl fermions,
and complex scalars.

The objects one calculates are the partial amplitudes
A„.„which depend only on the external momenta and
helicities. For the five-point function, there is only one
independent partial amplitude for each configuration of
external helicities; A5.2 and 253 are related to the adjoint
contributions to A5. ~

via decoupling equations [7].
The string-based method meshes well with the spinor

helicity representation for the polarization vectors [4,5],
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which provides an efticient method for extracting the
essential gauge-invariant information in an on-shell am-
plitude. This method yields expressions written in terms
of spinor products (ij ) and [ij], which are defined by
(ij) =y (k;1@+(kj), lij ] =@+(k;)y (kj), where yi, (k)
is a massless Weyl spinor with momentum k and helicity

Up to a phase, (ij) and lij ] are square roots of the
Lorentz products $J =(k;+kj) . Unfortunately, the
relations —momentum conservation and the Schouten
identity —between different forms of a given expression
are nonlinear, which makes it hard to give a canonical
form for such expressions, or equivalently makes it hard
to simplify complicated expressions. However, one can
evaluate "phase-invariant" combinations of spinor prod-

!
ucts in terms of s;& and contractions of the Levi-Civita

tensor

c(i,j,m, n) =4ic„,~ k/'kj'k~ k„

= [ij ](jm) [mn](ni) —(ij) [jm](mn) [ni] .

It su%ces to calculate the ratios

(iJ)[Jk] $i($j/c+$kl$ij $ik$j( c(~ J k i)
(i I)[ik] 2s;Iski

(2)

using, e.g. , methods used in Ref. [8]. In this way spinor
products can be eliminated from any expression, apart
from an overall prefactor.

For massless five-point kinematics, such an expression
can then be written as a rational function in the five kine-
matic variables [P~,P&,P3,P4, P5I (or any cyclic permuta-
tion of this set), where

5

P;=[, +1](+1, +2)[+2, +3](+3, ) —~.JJ,
—]/2

(3)

The only independent Levi-Civita contraction is given

by c(1,2, 3,4)/( —Qj=&$j j+&) ' =(PsPz +P~P3+Pz P4 cally [10]. The corresponding one-loop amplitudes are

+P3P5+P4 P~ )/P3 =P; —P,
* for any i, and the indepen- then free of infrared divergences. The remaining ampli-

dent Lorentz products by $;;+~ = —I/(P;+P,*+~)(P;+2 tudes are infrared divergent; for practical purposes these
+P'+3). Simplification of rational functions in P; is divergences must be regulated using dimensional regular-
straightforward. ization. The computation of these helicity amplitudes

The P; variables are related to the variables y; and A5 thus requires the knowledge of five-point loop integrals in

used in Ref. [9] to perform pentagon integrals, via Pt* D=4 —2c [9,11].
= —(y;+q ~ As )/2. Indeed, the derivative approach to For the finite helicity amplitudes, supersymmetric iden-

evaluating tensor integrals [9], when applied to the penta- tities [12] imply that the contributions of particles of
gon integrands encountered in the five-gluon calculation, different spin circulating around the loop are related,
and expressed in terms of the appropriate set of p; vari- A„', = —A„.',j =A„.,i. (This holds true for the partial
ables, allows one to significantly reduce the degree and amplitudes whether or not the theory as a whole is super-
size of the Feynman parameter polynomials in the in- symmetric. ) Indeed, in the string-based method, these
tegrand. identities hold for the integrands of each diagram. The

!
At tree level, certain helicity amplitudes vanish identi- amplitudes are

A5. i 1,2,3,4, 5[]1 + + + + + I $12$23+$23$34+$34$45+$45$5l +$$1$l2+c(1 2 3~4)

96' (12&(23)(34)(45)(51)

~,".
,'(1 —,2+ 3+ 4+ S+) =

48~~ [i 2](23)(34)(4S)[S i]
(4)

($23+ $34+ $45) [25 ] —[24](43) [35][25]

[12][15] (12) (13)2 [23] +(13) (14) +(14) (15)
(i2&(is& (23) (34& (4s)

In order to present the results for the remaining, infrared-divergent amplitudes in a compact form, it is helpful to
define the following functions:

ln(r) ln(r)+1 —r ln(r) —(r —1/r)/2
L2 r

I —r '
(1 —r)' '

(I —r)'
(s)

I
Ls~(r~, r2) =

z Li2(1 —r~)+Li2(l —r2)+Inr~ lnr2—
( I r) r2) '— —

where Li2 is the dilogarithm; a prefactor,

R2 + (1 —r
~

—rq) [Lp(r ~)+Lp(rp)]
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(4~)' r(i+~)r'(I —~)
r(1 —2e)

a universal function,

(6)

vg=— 1 g p

j—] Si,j+ ]
2 +ginj=]

si i+1
Sj+ 1,j+2

ln
sj+2,j—2 5 2 ~R+—R
sj—2i —

1 6 3

the following functions for the (1,2,3+,4+,5+) helicity configuration,

Vf = — ——ln
5 1

2E 2 S23 ss]

r
2 2

+ ln v'= ——vf+ —,1 2

3 9 '
i

1 (12) ((23)[34](41)+(24)[45](51)) Lo( —$23/ $5I )
2 (23)(34)(45)(51) SS]

1 [34](41)(24)[45]((23)[34](41)+(24)[45](51))L2( $23/ 55I)
3 (34)(4S)

1 (35) [35]3
1 (12)[35] 1 (12)[34](41)(24)[45]

3 [12][23](34)(45)[51] 3 [23](34)(45)[51] 6 523(34)(45)sqi

and the corresponding ones for the (1,2+,3,4+, 5+) helicity configuration:

Ff
3

V'= ——Vf+ —,1 2

3 9 '

Ff=

2 (23) (41) [24) L2( 523/ SSI) 2 (21) (53) [25] ~2( sl2/ $34) 1-2( $34/ 55I)
3 (45)(51)(24) 3 (S4)&43)(2S)

1 (13)[24][25]((15)[52](23)—(34)[42](21)) + 2 (12) (34) (41)[24] 2 (32) (15) (53)[25]
3 (4s) 3 (45)(S 1)(24) 3 &54)&43&(2S&

1 (13) ((15)[52](23)—(34)[42](21)) Lo( —s34/ —SSI) 1 [24] [25]
6 (12)(23)(34)(45)(51) SSI 3 [12][23][34](45)[51]

1 (12)(41)'[24] ' I (I 3)'[24][2s]
3 (45&(S 1)(24)[23][34]s„ 6 s34(45)s5 I

+ 1 (32)(53)'[25]'
3 (S4)(43)(2S)[21][15]s,4

5 1
2 2

Vf = — ——ln " +ln
2t 2 $34 ss]

(13) (41)[24] Lst ( $23/ 5$I, 534/ ssI ) (13) (53)[25] Ls I ( —s I2/
—s34 55I/ $34)

(4s&&s I) SS1 (34)(45) S34

1 (13) ((15)[52](23)—(34)[42](21)) Lo( —$34/ $51)
2 (12)(23)(34)(45)(51) SSI

(12)(23)(34)(41) [24]2 2Lst( —$/3/ $5I $34/ $5I)+LI( $23/ $5I)+I I( $34/ $$I)

(45)(51)(24)' S 2

(32)(21)(15)(53) [25] 2Lst( —st2/ —s34 55I/ $34)+LI( —sI2/ —s34)+LI( —s5I/ —s34)

(54)(43)(25) ' $34

F'or positive values of s;i, the logarithms and dilogarithms
develop imaginary parts according to the prescription

s;i s;~+is. We also remind the reader of the tree am-
plitudes,

8 '"'(1,2,3+,4+,5+) =i(12& /((12)(23)(34&(4S&(S1))

g 101 (Vsg tree+ Fs)

= —c [(Vf+ V')4'""+i(Ff+F')],
=cr [(Vg+ 4 Vf+ V') 2 5""+i (4Ff+ F') ] .

(IO)

and

W
"-(1,2+, 3 —,4+, S+ ) = i(13)'/((12)(23&(34&(4S)(S I ) ) .

In terms of these functions, the MS (modified minimal
subtraction scheme) renormalized amplitudes are

The rest of the helicity amplitudes are related by cyclic
permutations or complex conjugation to those given
above. It is interesting to note that in supersymmetric
theories, the V' and F' terms cancel out of the final am-
plitude, and that in IV=4 supersymmetric theories only
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t he V~ term survives. The separation implied above into
g, f, and s pieces arises naturally on a diagram-by-
diagram basis within the string-based approach. In this
approach the V~ term represents the only calculational
difference between the contributions with gluons circulat-
ing around the loop, and those with fermions; this term
has a particularly simple expression at every intermediate
stage of the calculation. The parameter 6R controls the
variant of dimensional regularization scheme [2]: For
BR =0, one obtains the four-dimensional helicity scheme,
while for 6R = l one obtains the 't Hooft- Veltman
scheme.

There are several checks we have applied. We have
checked gauge invariance, both by computing amplitudes
with longitudinal gluons, verifying that one obtains zero,

and by calculating a helicity amplitude with an alternate
choice of spinor-helicity reference momenta, and verify-
ing that the result is unchanged. In addition, the forms
given above display manifestly the reAection symmetries
expected of the amplitudes, symmetries that are not
present in the contributions of the individual diagrams.
The amplitudes also have consistent limits as one of the
gluon momenta becomes soft, and as two adjacent mo-
menta become collinear.

A next-to-leading order, only the infrared-divergent
helicity amplitudes (5)-(10) enter into the construction
of a program for physical quantities. In order to con-
struct such a program for three-jet quantities, one must
form the interference of the tree amplitude with the loop
amplitude; this has the form [7]

[As As]NLo= 2g IV (iV —1)
colors

Re g W,'"-*(cr)W, , (a)+, Re g [W,'""(r p)A, , (p) —A"-*(p)A, (r p)]
a 6 SS/ZS W p e S5/Z5

+, Re g g ~,'"-'(h p)~, ,(p)
A h E 05 J7 g P(35)

where r is the permutation (24135), P(3) is the ten-
element set of distinct partitions of five elements into lists
of' length two and three, and Hs = [(12345),(34125),
(31245), (21345), (32145), (34215)j. For QCD with n~
flavors of massless quarks, one substitutes As. ~

+(nf/iV)WJ, '(" and W, ,—W,") into Fq. (11). One must
then combine this virtual correction with the singular
terms in the 2 4 matrix elements arising from the in-
tegration over soft and collinear phase space. The Giele-
Glover formalism [13] makes use of the color ordering in
construction of universal functions representing the re-
sults of the soft and collinear integrations, and is the most
convenient one for doing so. We have used it to check
that the poles in e do cancel as expected.
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