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Quantum Optical Cloning Amplifier
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We demonstrate experimentally that a type-II pulsed optical parametric amplifier can duplicate (or,
clone) a signal in the quadrature it amplifies. Although this device is an amplifier with large gain, it
meets the quantitative criteria for quantum nondemolition measurements and, thus, operates in the non-
classical regime. It can be used as a noiseless amplifying optical tap which, at the same time, can over-

come the noise introduced downstream by propagation and detection losses.

PACS numbers: 42.50.Dv, 42.50.Lc, 42.65.Ky

Type-II parametric amplifiers are known to produce
various quantum effects, such as twin beams [I,2],
squeezing [3-5], quantum nondemolition (QND) mea-
surements [6], and Einstein-Podolsky-Rosen correlations
[7]. Pulsed operation of such amplifiers [2,4-6] is partic-
ularly attractive because it eliminates the need for a reso-
nant cavity and its bandwidth limitations. However, the
high intensities of pulsed operation produce distortions of
the wave fronts of the amplified signals and make subse-
quent homodyne detection of squeezed light very difficult
[8]. Thus, large quantum effects involving high-intensity
pulses have so far been restricted to twin beams, obtained
in a phase-insensitive configuration [2].

Another experimental configuration that should permit
observation of significant quantum effects in pulsed
operation consists, essentially, of a twin-beam setup with
phase-dependent amplification. In this setup, an input
beam is injected in a potassium titanyl phosphate (KTP)
crystal at an angle of 45° from the crystal axes and un-
dergoes phase-sensitive amplification. The output beam
is split into two equal parts by a polarizer with transmis-
sion and reflection axes parallel to the crystal axes [see
Fig. 1(a)]l. When the input beam is amplified, the noise
of the difference of the intensities of the two output
beams drops below the shot-noise limit: This is the well-
known “twin-beam” effect, due to the fact that the signal
and idler photons are produced in pairs. This scheme can
be reinterpreted in an alternate way by regarding the
type-II parameteric amplifier as a pair of two type-I
amplifiers of inverse gains, each acting on a separate po-
larization [see Fig. 1(b)]. One amplifier amplifies the in-
put beam in a phase-sensitive (and, therefore, noiseless
[9]1) way, whereas the second amplifier deamplifies the
vacuum that enters in the polarization orthogonal to the
input signal. At the exit of the KTP crystal, the
amplified signal is split by the polarizing beam splitter,
with squeezed vacuum entering into the “unused” port.
The squeezed vacuum has the appropriate modal shape
and phase to minimize the beam splitting noise, as seen in
the twin-photon viewpoint. Thus, in the overall setup,

noiseless amplification is automatically followed by noise-
less optical tapping. In the high gain limit, both the
mean field and the fluctuations of the amplified quadra-
ture component are ‘“magnified” and copied onto the two
output beams emerging from the polarizer which are,
therefore, “clones,” that is, identical to each other for
this quadrature component.

The purpose of this Letter is to show two nonclassical
properties of phase-sensitive pulsed parametric amplifi-
cation. First, parametric amplification can overcome the
quantum noise introduced by downstream losses (e.g., in
the detector) preserving, thus, the signal-to-(quantum)-
noise ratio (SNR) of the input beam, a feature that is of
interest in improving low-quantum-yield receivers [10,
11]. Second, a parametric amplifier can produce a dupli-
cate of the quadrature it amplifies, in a way that con-
serves the input SNR. It thus acts as an efficient Y
coupler that may lead to the realization of a high-fidelity
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FIG. 1. (a) Experiment using a type-II crystal and an input
beam polarized at 45° from the crystal axes and the polarizer
axes. (b) “Unfolded” version of (a), using two type-I crystals
each operating on a different channel. The phase relationships
in the type-II crystal are such that when one crystal of the “un-
folded” version displays maximum phase-sensitive amplification,
the other crystal displays maximum phase-sensitive deampli-
fication.

© 1993 The American Physical Society 267



VOLUME 70, NUMBER 3

PHYSICAL REVIEW LETTERS

18 JANUARY 1993

optical tap [12,13]. In order to quantify the fidelity of
amplification and cloning, we use the criteria that have
been introduced for characterizing QND measurements
[14,15]. We therefore adopt the QND terminology and
label the two output beams ‘“‘meter”” and “signal,” even
though in the phase-sensitive parametric amplifier these
two output channels are equivalent, except for their po-
larization.

Our experimental setup is as follows. A frequency-
doubled mode-locked Q-switched yttrium lithium fluoride
(YLF) laser (Coherent Antares) pumps two KTP crys-
tals in series (Fig. 2). The pump beam, at 527 nm, con-
sists of 440-ns-long (FWHM) trains of 35-ps-long pulses,
with a Gaussian train envelope, produced at a repetition
rate of 400 Hz. The peak intensity of the central pulses
in a train is 50 MW/cm?, producing a parametric gain of
up to 10 dB. An “input” beam at 1054 nm (consisting of
630-ns-long trains of pulses, synchronized with the pulses
of the pump beam) is injected in the crystal as described
above, and the two output beams are detected by means
of two InGaAs photodiodes (Epitaxx ETX-300). Optical
saturation of the photodiodes is avoided by limiting the
optical gain and by adjusting the incident intensities so
that the peak photocurrent never exceeds 10 mA, i.e., 0.5
V on 50 Q. Also, the confocal parameter of all beams is
adjusted to be much larger than the crystal length to
minimize mode distortion and diffraction effects [8]. The
output photocurrent from each photodiode is split 90/10
and one of the 10% portions is introduced into a spectrum
analyzer (HP 8563A) set at 76 MHz: Measurement of
the 76-MHz modulation of the mode-locked train pro-
vides a direct intensity reference. The 90% portions of
the two photocurrents are subtracted from each other by
means of a power combiner. The output of the combiner
is introduced into a bandpass filter that transmits between
12 and 25 MHz, and has 90 dB attenuation outside this
range. This filter prevents saturation of the subsequent
low-noise amplifier (Trontech W110B-13) by the 76-
MHz modulation and its harmonics. The amplifier out-
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FIG. 2. Experimental setup. The KTP parametric amplifier
is pumped at 527 nm and amplifies a signal at 1054 nm polar-
ized 45° to the crystal axes. The polarizer axes are parallel to
the crystal axes. The photodiode currents are subtracted in a
power combiner and the noise and signal are each measured by
a spectrum analyzer (S.A.) and boxcar combination.
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put is fed into a second spectrum analyzer with 10 MHz
rf bandwidth (Tektronix 2782) set at 18 MHz for the
quantum noise measurements. The large bandwidth of
the spectrum analyzer allows one to time resolve the en-
velope of the Q-switched pulse train, and only about
seven mode-locked pulses at the center of the train are
effectively registered (time window 100 ns). Video
averaging is provided by two boxcars following each of
the two spectrum analyzers; the boxcars are triggered by
the Q-switch synchronization from the laser power sup-
ply. Each measurement involves about 5000 Q-switched
trains, averaged by a computer that receives the data
from the boxcars. All measurements are made by sweep-
ing the relative phase of the pump and input beams, and
by registering simultaneously the modulation (at 76
MHz) and the noise (at 18 MHz) for the output beams.
These two quantities are then plotted as x and y, respec-
tively, with the phase as a parameter. The noise at 18
MHz gives a quantitive measure of the noise at the
modulation frequency because of the large bandwidth of
pulsed parametric amplification. At each output intensity
the shot noise is measured by removing the pump beam
and readjusting the intensity of the unamplified input
beam so that it produces the same power of 76-MHz
modulation. It is then checked that the sum and the
difference of the two output photocurrents displayed the
same noise level, a feature which is characteristic of shot
noise.

In Fig. 3 we give the noise power of a single output
channel as a function of the measured gain G of the 76-
MHz modulation. Both the signal and meter channels
give similar results. The 0-dB level on both axes is mea-
sured by turning off the amplifier pump. On the same
curve we plot the shot noise level of the measured output
channel; this provides the standard quantum level (SQL)
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FIG. 3. Noise characteristics of the “meter” beam undergo-
ing phase-sensitive amplification: Stars: noise power of
amplified beam; data fitted with Eq. (3). Squares: noise power
of coherent beam, fitted with Poisson noise.
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of noise for a single-channel measurement. The curve is
a straight line of slope 0.5 passing through the origin, as
expected for shot noise. We note that the quantum noise
curve of the amplified beam is also a straight line of slope
0.5, but is displaced vertically by 2 dB with respect to the
SQL. This result may be understood by considering the
quantum noise in traveling-wave parametric amplification
[16]. The measured intensity of each polarization (I;)
(where i =m,s) as a function of the total input intensity
ITin is

(I =% nIinG , ¢

where 7 is the overall quantum efficiency of single output
channel, while G is the phase-dependent gain

G =cosh(2y) +sinh(2y)cos¢ )

with y=x(2)Ez being the parametric gain parameter and
¢ the relative phase of the pump and signal waves. In
Fig. 3, the maximum gain attained (i.e., for ¢=0) is 9
dB, which implies that cosh2y=1.59. The quantum noise
power in a single output channel can be calculated as

((81;) D =+ nlinGlncosh(2y)+1—nl. 3)

Clearly, the noise power of each output beam exceeds the
SQL by a factor of (7cosh2y+1—n) and this accounts
for the vertical displacement of the experimental points in
Fig. 3. A fit of our results gives n=0.82 = 0.04.

An important point about this experiment is that, al-
though a single output beam is more noisy than the SQL,
its measured SNR in the quadrature ¢ =0, displays an
apparent improvement of 2.5 dB with respect to the SNR
of the input to that channel, as if the input noise figure of
the amplifier were —2.5 dB. This is evidenced in Fig. 3
by the data points that are below the line x =y which
gives, for each gain, the noise level that maintains the
SNR to its unamplified value. It should be stressed that
this SNR ““improvement” upon amplification corresponds
to the compensation of the noise introduced by the polar-
izing beam splitter and the detector losses. The measured
SNR cannot be improved beyond the SNR of the full in-
put beam at the entrance of the parametric amplifier.
Indeed, in the quadrature ¢ =0, the SNR at the detector
can be calculated from Egs. (1) and (2) as

= n

SR e 20
where we have adopted a definition in terms of noise
power, and defined the ith channel information transfer
coefficient 7; as the ratio of SNR; to SNR;,. This equa-
tion indicates that the partition noise due to the polariz-
ing beam splitter and to the losses dominates at low gains,
whereas at high gains the SNR tends towards that of the
full input beam. In our measurements, the information
transfer coefficient in the quadrature ¢ =0 is T;=0.66

=+ 0.05 for both the signal and meter channels.
Figure 4 presents the results of the twin-beam experi-

— SNRinE T,'SNRin s (4)

6

NOISE (dB)
N

RN NSRS E NN N R R RN

3" {ab ¢
olo *ni.r**j;#*/'

Ll

2 4 6
GAIN (dB)

FIG. 4. Noise of the intensity difference of the “signal” and
“meter” output channels. Stars: noise of amplified beams,

fitted with Eq. (5). Squares: noise of coherent beams, fitted
with Poisson noise.
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ment by plotting the noise power of the difference of the
two beams against the gain G. The experimental points
are, generally, close to the horizontal 0-dB axis which
corresponds to the input noise difference. The SQL was
measured by sending on the detectors two coherent beams
of the same average intensity. The SQL corresponding to
this experiment is, therefore, defined with respect to the
noise of two beams. The SQL curve is a straight line of
slope 0.5 going through the origin. The quantum noise
measured is below the SQL for all positive gains and
reaches 3.5 dB in the quadrature ¢ =0. This value is lim-
ited by the gain. These results can be understood by con-
sidering that, since noiseless amplification of the input
beam occurs on both output channels simultaneously, the
two output beams are amplified but are identical versions
of the input beam. Thus, the noise measured for their in-
tensity difference is equal to the input noise, independent-
ly of the gain, as expected, also, from twin-photon con-
siderations. In the presence of losses, the noise is

(81, — 81,) D =nlinln+ U —1n)G). (5)

A plot of this curve (with n=0.85) fits the experimental
points quite well.

The significance of our results can be better appreciat-
ed if our measurements are discussed in terms of the
three criteria proposed for the evaluation of QND experi-
ments [14,15]. The first QND criterion is that the meter
beam provides a good measurement of one quadrature of
the input beam, by following faithfully its fluctuations.
The fidelity of the measurement can be quantified
through the information transfer coefficient T,, defined
by Eq. (4). The measured value for the quadrature ¢ =0,
T, =0.66, is clearly higher than 0.5, the transfer
coefficient of the polarizing beam splitter. The second
QND criterion is that the signal output reproduces faith-
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fully the same quadrature of the input beam. In our case,
there is no physical difference between the output signal
and meter so that Ty =T,,. Classically, the input noise is,
at best, distributed between the output channels so that
Ts+ T, <1. On the other hand, for a perfect quantum
measurement in which each one of the two output beams
reproduces exactly the input, we have 7,+ 7, =2. In our
experiment, and for the ¢ =0 quadrature, T+ 7, =1.32
which is clearly in the quantum regime. Finally, the third
QND criterion is that the meter and signal beams are
faithful copies (clones) of each other, so that measure-
ment of one beam gives information about the other. A
quantitative measure of this fidelity is the uncertainty
that remains on the value of the signal when the meter in-
tensity is known. This quantity corresponds to the condi-
tional variance defined as

[<81,81,1?
((81,n)

where the subscript 1 indicates that the quantities are
measured in units of the one-beam SQL. For a classical
duplicator (i.e., a 50/50 beam splitter) we have W, =1,
while for perfect quantum correlation between the two
output beams W;),, =0. Equation (6) can be reexpressed
in terms of the quantities measured in this experiment
that is, the twin-beam noise difference [referenced to the
two-beam SQL and denoted ((8I; —6I,)%),] and the
one-beam variance, as

Wlm =((81,) %) — , (6)

(81, — 81,,) %),
((81,,) %N

The conditional variance for the quadrature ¢=0 is
Ws|m =0.77, clearly below the classical limit of 1.

In conclusion, we have shown that a type-II phase-
sensitive amplifier can clone the signals in the quadrature
that it amplifies. Although this device is not, strictly
speaking, a QND device, since the output signal is actual-
ly a “magnified” copy of the input signal, all QND cri-
teria introduced in the literature are satisfied. From a
practical viewpoint, such an optical cloner can duplicate a
signal channel without contaminating it, providing thus
an efficient quantum optical tap. At the same time, the
two outputs of this device are relatively immune to subse-
quent losses: The device acts both as a preamplifier and
as a “presqueezer’” that overcomes both the losses and the

Weim =81, — 61,,) D2 |2 — (7
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quantum noise that these losses introduce. This produces
an apparent improvement of the measured SNR, up to
the value of the input beam SNR. Such a device could,
therefore, have interesting applications in optical infor-
mation systems, if the constraints due to the phase sensi-
tivity of parametric amplification can be mastered.
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