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In the semiclassical limit, the two-dimensional space-time which emerges from string theory is a
black hole similar to the Schwarzschild solution. However, we find that in the ezact space-time, the
singularity is replaced by a regular surface of time-reflection symmetry. The maximally extended
space-time thus consists of an infinite sequence of asymptotically flat regions linked by wormholes,
rather analogous to the Reissner-Nordstréom space-time except that there are no singularities in this

case. We also calculate the mass and temperature associated with this space-time.

PACS numbers: 11.17.+y, 04.60.+n, 97.60.Lf

One of the great problems of classical general relativity
is that it is plagued by space-time singularities. For ex-
ample, one of the singularity theorems [1] asserts that if
one has a trapped surface in an asymptotically flat space-
time with matter obeying the strong energy condition (as
classical matter traditionally does), and which satisfies
Einstein’s equation, then the space-time is geodesically
incomplete. A simple corollary of this is that a black
hole must be associated with a space-time singularity.

There has been some hope that a satisfactory quantum
theory of gravity will resolve the difficulties associated
with singularities. The only known realistic candidate
for such a theory at present is string theory. Contrary
to popular folklore, our understanding of string theory
has seen important advances in the past few years. Per-
haps most notable among these has been the realization
that consistent string theories can be constructed in tar-
get space dimensions much lower than the critical dimen-
sion. A very successful example is the ¢ = 1 matrix model
(for reviews see Refs. [2,3]), which nonperturbatively de-
scribes strings propagating in a (14 1)-dimensional back-
ground. Another major advance has been the discovery
of background metrics for these low-dimensional target
spaces. These classical solutions are in general curved
space-times, and indeed the prototype is a black hole so-
lution in 1 + 1 dimensions [4,5].

The dynamics of strings in a curved space-time is gov-
erned by the world-sheet conformal invariance of string
theory, which in turn is imposed by the vanishing of the
B functions for the target space massless fields [6]. In
1 + 1 dimensions for the bosonic string, these are the
metric, dilaton, and tachyon. However, the g-function
equations are only known perturbatively in the inverse
string tension o/, and so conformal invariance can only
be imposed order by order. The (1+1)-dimensional black
hole of Ref. [4] was found by setting the tachyon to zero
and solving the lowest order 8 functions, which have the
form of Einstein’s equation coupled to a dilaton.

The resulting black hole solution is given by the metric
and dilaton [5)

ds® = —tanh?r dt? + dr?

¢ = ¢o + Incosh?r ;

or, in Kruskal-type coordinates, as
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It is clearly seen to possess a causal structure similar to
that of the Schwarzschild black hole in four dimensions
[5]: with an event horizon at uv = 0 and a curvature
singularity at uv = 1. The Penrose diagram for the max-
imally extended black hole space-time is shown in Fig.
1.

ds? =

Witten has managed to find an exact conformal field
theory description of this black hole [5], which ensures
that conformal invariance is obeyed nonperturbatively
to all orders in k, the Kac-Moody level. This descrip-
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FIG. 1. Penrose diagram for the two-dimensional black
hole as discussed by Witten. Regions I, I’ are asymptotically
flat space-times exterior to the black hole and white hole hori-
zons. Regions II, I’ are inside the horizons, while IV, IV’ are
asymptotically flat regions each containing a naked singular-
ity. The double lines represent the curvature singularities at
uv = 1.
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tion is in the form of a Wess-Zumino-Witten (WZW)
model [7] based on the group G = SO(2, 1), gauged by the
subgroup H = SO(1,1). The resulting coset space con-
struction G/H maps to a noncompact (1+1)-dimensional
gravitational background in which strings propagate. In
the semiclassical approximation k& — oo, the above black
hole solution is recovered [5]. However, because of the
relationship between k and the central charge c of the
S0(2,1)/SO(1,1) model given by [8]

o=k _1, 3)

k takes the value 9/4 for a bosonic string background
since ¢ = 26 in order to cancel the contribution from
the diffeomorphism ghosts. Thus, 1/k is quite large, and
corrections due to this should not be ignored.

The effective space-time background for general k was
first derived by Dijkgraaf, Verlinde, and Verlinde [9], and
is

ds? = 2(k — 2) [-B(r) dt* + dr?] ,

(4)
¢ = ¢o + %ln ]sinh2 2r/ﬂ(7")| )
where () is given by
o\ 1
B(r) = (co‘ch2 T — E) . ()

It reduces to (1) for £ — oo (up to an overall conformal
factor), and is believed to solve the B-function equations
exactly. This has been confirmed by explicit computation
to four-loop level in Refs. {10,11].

A few things can be said about the geometry of this
space-time for £ > 2, which we will assume from now on.
Apart from considerations of string physics, it is believed

that £ > 2 in order to have a unitary conformal field the-
ory. The coordinate patch (4) and (5) is asymptotically
flat and describes the geometry exterior to a horizon at
7 = 0. In fact there are two copies of this region, one for
T positive and the other for r negative, which are joined
together at 7 = 0 in a way analogous to the Kruskal
bridge of the Schwarzschild black hole. This space-time
corresponds to regions I and I’ of Fig. 1. Also note that
the dilaton grows in strength asymptotically.

It is simple to see that the space-time given here is a
black hole by a straightforward analogy with the & — oo
limit. The black hole horizon, at r = 0, is as usual as-
sociated with a Hawking temperature. The easiest way
to find the temperature [12] is to analytically continue
the metric (4) to its Euclidean region, and observe that
the conical singularity at » = 0 is removed by identifying
the Euclidean time coordinate with period 27. The in-
verse of the proper period at infinity is then the Hawking
temperature, and is given by Ty = 1/(27/2k).

One can also estimate the mass of this black hole. As-
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suming that the target space action is given by the Ein-
stein action, and that the various higher-order corrections
are negligible as one goes towards r — oo, one can calcu-
late the Arnowitt-Deser-Misner (ADM) mass by follow-
ing standard techniques [in particular, using Eq. (3.29)
of Ref. [13]]. The result is

M=e¢°\/%<l—%>_l, 6)

which agrees with the mass of the semiclassical black hole
[5] to order 1/k.

We can now determine what the space-time represents
physically. Outside the horizon the space-time is static,
and therefore it represents a black hole in thermodynamic
equilibrium with a cloud of tachyons at the Hawking tem-
perature Tg. Since the mass is finite, it seems that the
total energy of the radiation is finite. Thus the entire
system is gravitationally bound, rather like an isolated
“star.”

Within the context of gauged WZW models, there ex-
ists a duality transformation [9] which maps the above
space-time to a new one again of the form (4), but now
with

B(r) = (mh% _ %>_1. )

The conformal field theories associated to each of these
two dual target spaces are completely equivalent, but
their geometries are very different. The new space-time
given by (7) is also asymptotically flat, but there is a
curvature singularity at r. = arctanh./2/k. Thus the
region r, < r < 00, which we denote by IV and where
B(r) > 0, is a space-time that is exposed to a naked sin-
gularity. There is also a region behind the singularity
0 <r <7, where 8(r) < 0, which we call III. It vanishes
in the kK — oo limit, and so has no analog in Fig. 1.

A new form of the metric which extends over the dif-
ferent regions of the entire space-time has been found in
Ref. [14]. It is

ds? = 2(k —2) [—ﬂ(m) dt? + 4—'%] ,

(z2
(8)
z+1 2\7!
ﬁ(z)—(x—lﬂz) ’
with the associated dilaton
2
_ 1 € -1

To recover the above metrics, we have to reparametrize
T in the various regions of this extended geometry. By
setting £ = cosh2r > 1, (8) reduces to the metric (4)
with (5), thus yielding the exterior region I. The black
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hole horizon is at x = 1. By contrast, the dual met-
ric, consisting of regions III and IV, is obtained via the
redefinition = —cosh2r < —1. The singularity is at
z. = —(k+2)/(k —2) < —1. Last, region II inside
the horizon is labeled by —1 < =z < 1, and a suitable
parametrization of it is x = cos 2r.

Note that in addition to being singular at the horizon
and singularity, the metric (8) is singular at the point
z = —1 between them. It is a coordinate singularity as
can be seen from the regularity of the scalar curvature

2%k (k—2z+k—4
k=2 [(k—2)z+k+2?

(10)

at that point. Does it correspond to anything special?

From (8), observe that region I has signature (—+),
region II has signature (+—), region III has signature
(++), while region IV has signature (—+). Thus z = —1
appears to mark the boundary between two regions of
different space-time signature. But what does it mean to
have a region of Euclidean signature between the horizon
and singularity of a Lorentzian black hole? Specifically,
what happens to a particle [15] when it falls into the
black hole and reaches x = —1?7 By studying geodesic
motion in this geometry, this boundary turns out to be
at finite proper distance from any point at finite z. How-
ever, nothing can enter the Euclidean region III as the
signature of the space-time is fixed to be Lorentzian.

There is no real physical meaning attached to this
“boundary,” which follows by finding coordinates which
are nonsingular there, e.g.,

z=-1+2p7. (11)

The metric (8) then takes the form

k(1 — p? dp?
ds? = 2(k — 2) [54-(;)2_(1:32'5“2_1%?] . (12)

It is flat and nonsingular at p ~ 0. Thus an infalling par-
ticle has radial coordinate p running smoothly through
p = 0, and it sees nothing special at that point. However,
there are coordinate singularities at p = +1, correspond-
ing to two copies of the horizon z = 1.

To summarize, we have found that the black hole
space-time is disconnected from the singularity by a re-
gion of Euclidean signature. A particle falling into the
black hole sees no singularity, but emerges into another
asymptotically flat black hole space-time. Two copies
of region II are glued together at the surface of time-
reflection symmetry £ = —1 to form a wormbhole bridg-
ing two asymptotically flat space-times. Thus we have an
infinite chain of universes connected by timelike worm-
holes, whose Penrose diagram is shown in Fig. 2. It is
reminiscent of the conformal structure of the Reissner-
Nordstrém black hole, except that there are no singular-
ities present in this case. We also have a disjoint asymp-

(®)

FIG. 2. (a) Penrose diagram for the maximally extended
exact black hole geometry. This consists of an infinite se-
quence of asymptotically flat regions I linked by wormholes
II. The dashed lines represent £ = —1 surfaces. (b) There is
also a disjoint asymptotically flat region IV which contains a
naked singularity.

totically flat region containing a naked singularity.

Such an unusual situation of a black hole space-time
having an event horizon but no singularity has no analog
in classical general relativity. The reason for the appear-
ance of a wormhole rather than a curvature singularity
may be traced down to the negative scalar curvature of
region II inside the horizon. The nonattractive charac-
ter of gravity there prevents a singularity from forming,
but supports a wormhole. Note that this feature results
only when one includes the higher-order terms, since the
scalar curvature of region II blows up in the ¥ — oo ap-
proximation. This reinforces the fact that higher-order
corrections are important in regions of high curvature,
for instance near the singularity in the semiclassical ap-
proximation.

A similar nonsingular geometry has been found in ex-
tremally charged black strings in three dimensions [16],
which is also an exact string background. One may
be tempted to speculate that nonsingular black holes
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are generic to string theory, but more examples of such
conformally exact metric solutions of string theory are
needed to confirm this.

A direct generalization of the two-dimensional space-
time of this Letter to three dimensions [based on
the coset space SO(2,2)/SO(2,1)] and four dimensions
[SO(3,2)/S0(3,1)] has also been carried out in Ref. [14]
and explicit metrics found. However, the complexity of
these metrics makes them rather intractable at this stage.
In the k¥ — oo limit, the three-dimensional metric was
found to have a bizarre singularity structure [17]. Would
this simplify in the more realistic case of finite k? Of
course other coset space constructions may be consid-
ered, and a classification of possible G/H coset spaces
that yield noncompact Lorentzian target spaces has been
done in Ref. [18].

Ultimately, one would be interested in four-dimen-
sional black holes, especially representing known solu-
tions of general relativity within a string framework, and
looking for any qualitative differences near the singular-
ities. However, to avoid the presence of singularities,
the background fields of string theory have to violate the
strong energy condition, which is indeed the case for the
dilaton.

We intend to relate further details elsewhere.

We thank Stephen Hawking for an interesting conver-
sation.
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