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We construct an explicit class of dynamic Lorentzian wormholes connecting Friedman-Robertson-

Walker spacetimes.

These wormholes can allow two-way transmission of signals between spatially

separated regions of spacetime and could permit such regions to come into thermal contact. The cosmol-
ogy of a network of early Universe wormbholes is discussed.

PACS numbers: 98.80.Hw, 04.60.+n

The most convincing evidence for the large-scale
smoothness of the observable Universe is provided by the
cosmic microwave background (CMB) radiation, which
was in thermal equilibrium with matter until the Uni-
verse cooled to a temperature of about 4000 K, when the
radiation decoupled from matter. From its discovery in
1965, numerous measurements have established the CMB
to be consistent with a blackbody spectrum at a tempera-
ture 7=2.735%0.06 K, and uniform in all directions (on
angular scales from 10” to 180°) to about a part in 10*
[1]. Since this radiation is received from regions which
could not have been in causal contact at the time of last
scattering, the uniformity in temperature evident in the
CMB must be arranged as an initial condition in the big-
bang model [2]. This shortcoming of the original big-
bang model is known as the horizon problem. There are
two ways to solve this problem. One is to postulate that
the cosmic scale factor underwent an era of exponential
expansion (around 50 e-foldings) such that all the
presently observable Universe is in one inflated causal
domain. This is the inflationary Universe scenario which
has been exhaustively explored in the literature [3]. The
second possibility is that the Universe did not necessarily
inflate, but has (or had) traversable bridges (wormholes)
connecting otherwise causally disconnected regions of
spacetime. This Universe with “handles” could alter and
perhaps solve the horizon problem. Since this approach
has not been studied, we are led to investigate it here,
where we envision a network of traversable wormholes
existing for a very brief time in the early Universe, aris-
ing out of Planck-time quantum metric fluctuations.

The first step in any investigation of wormhole “phe-
nomenology,” and a main result of this work, is the con-
struction of specific cosmological wormhole solutions to
Einstein’s equations [4]. Although our treatment of
wormholes will be purely classical, we assume (and we
may turn out to be wrong [5]) that quantum field theory
permits sufficient violation of the classical weak energy
condition to allow the formation of traversable wormholes
that can emerge from the Planck era and survive
sufficiently long to result in the thermalization of the
Universe (described below). In this regard, we explore
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plausible scenarios for wormhole evolution [6] while as-
suming the most trivial ensemble of wormholes; i.e., we
assume all wormhole mouths have equal “mass” and are
at rest with respect to the cosmic expansion (Hubble
flow). In our conclusions we discuss relaxing these last
two assumptions.

The wormholes we will consider here result from sur-
gically modified Friedman-Robertson-Walker (FRW)
spacetimes. We adopt this technique for convenience’s
sake only; however, we assume the qualitative features of
the wormholes are independent of the details of the con-
struction. To construct them, take two copies of the
FRW solution [7] (adopting units where c =G =1)

2
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—Kr

¢))

and remove from each an identical four-dimensional re-
gion of the form Q;,=1{r1;=<a}. The resulting space-
time contains two disjoint boundaries 8Q,,=1{r;>=a},
which are timelike hypersurfaces. An orientation pre-
serving identification Q,=0Q, yields two FRW space-
times connected by a wormhole whose throat is located on
their mutual boundary 9Q [4]. Here, a=a(z) is a func-
tion describing the dynamics of the wormhole’s throat;
the physical radius of the wormhole is equal to aR. The
wormbhole is spherically symmetric and the boundary lay-
er is just the world volume swept out by its throat. This
procedure also leads to a wormhole connecting a single
FRW spacetime to itself if one identifies the two back-
ground spacetimes; i.e., we have a FRW space with a
handle. In this case, the two regions @ ; can be separat-
ed by an arbitrarily large distance in an open universe.
To insure the modified spacetime is itself a solution of the
gravitational field equations requires a proper matching
of the metric across the boundary layer. The required
junction conditions are most conveniently derived by in-
troducing Gaussian normal coordinates in the neighbor-
hood of the boundary hypersurface and integrating the
Einstein equations across the boundary [8]. The most
general stress-energy tensor which gives rise to two iden-
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tical FRW spaces attached by a wormhole as described +aR+@R) ™!
o —2r0=——"—""—— (9a)
here is given by [1—(aR)2]'?
T¢(x)=Sts(m)+ TP +T#6(—n), ()  and
Where T(+)F=T(_)/‘ is one of the Standard perfect-ﬂuid 4 _ *+*adR * 3aR + (aR) -1 (GR)Z[GR +aR]
v . v P =
source terms leading to (1) and [1—(aR)?)'? [1—(aR)2)*?
(9b)
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is the surface stress-energy. The Gaussian coordinate n
parametrizes the proper distance measured perpendicu-
larly through Q. Integrating GY =8xzT} across 9Q and
taking the limit as indicated in (3) yields [8] S7 =S} =0,
and

A7 —6iTr(aA%)]=8xS!, 4)
where A?{}Elimfao(ﬂf(“')j-—?{(_)}) is the “jump” in
the extrinsic curvature of the hypersurface in going from
the — e to the + ¢ “side.” For the case at hand, reflection
symmetry implies A7{f=27f(+){ and the spherical sym-
metry implies % =diag(# 7, #§,%#§) and Si=diag(—o,
P,P), where o,P denote the surface energy and pressure
densities. The extrinsic curvature (in any coordinate sys-
tem) is defined by

Hi;=nVpeln , (5)

where the e() constitute a set of three independent
tangent vectors defined along the intrinsic coordinates &°
parametrizing the hypersurface, and »* is the outward
unit normal (n,n* =+1, for timelike surfaces); the back-
ground covariant derivative is taken along the jth coordi-
nate direction. The throat proper time and the two an-
gles provide a convenient set of intrinsic coordinates:
E'=(7,0,¢). Since the position of the throat (.e., its
embedding in the background FRW space) is X*=(¢,
a(t),6,¢), the tangent vectors are simply e{y) =dX*/d&’,
and the unit normal is

a'R

M=
n 212"

1
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A straightforward calculation of (5) gives
He=a'R+——11+(a'R)?]"? (6)
aR
and
a"R
L
[1+(a'R)?1'?
where a’' =da/dt and R =dR/dt [9]. We have set k=0
since the curvature term in (1) is negligible during the
early stages of expansion. Note the appearance of the
two time parameters 7 and ¢ in (6) and (7). We can al-
ways eliminate one in favor of the other (e.g., coordinate
time 7) by using a' =adt/dt and
dt/di=[01—(aR)*"2. (®)

Physically, this amounts to calibrating the clocks at-
tached to the throat in terms of the comoving clocks. Do-
ing so, and substituting (6) and (7) into (4), yields the
wormbhole’s equations of motion:

+24'R, )
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The plus (minus) sign corresponds to the two possible
solutions of & in terms of a'. The usual redundancy be-
tween the Einstein equations and the conservation of
stress-energy T4 leads to a similar relation between the
wormbhole structure equations (9a) and (9b) and the sur-
face stress tensor (3). The jump in the field equation
G] =8xT7}, together with (4), implies [8]

VpuS™ =T -7 =0 (10)
where V,,, denotes the covariant derivative intrinsic to the
hypersurface. Thus, the surface stress-energy tensor is
conserved. The derivation of (9a) and (9b) together with
(10) constitutes the most important formal result of this
Letter.

With the wormhole equations of motion at hand, we
now proceed to solve them. As a first example, consider
the comoving case, @ =a'=0. Then (cf. [6])

oc=—1/2raR , an

and P=— +o. With a constant throat function a, the
wormhole’s radius simply grows in direct proportion to
the background scale factor R. This behavior is also
confirmed by (8), which implies 1 =1. These two time
scales coincide if and only if the wormhole throat is cou-
pled to the expansion. The surface energy density is neg-
ative, as indeed it must be: The violation of the weak en-
ergy condition (WEC) at the wormhole throat is expected
on general grounds. In simple terms, the spacetime re-
gion surrounding the throat acts as a diverging lens which
defocuses light and particle geodesics as they traverse the
wormhole. This path divergence reflects a gravitational
repulsion at the throat and signals the presence there of a
localized negative energy density. Although no classical
stress-energy tensor is known to violate the WEC, quan-
tum fields in curved backgrounds tend to develop local-
ized negative energy densities [10,11], and suggest these
wormholes are driven by quantum field fluctuations, their
backreaction on the metric [12], and the quantum fluc-
tuations in the metric as envisioned, for example, in the
spacetime foam [13]. According to (11), the comoving
wormholes can exist for any value of the fixed throat
function a. The magnitude of the surface energy density
decreases for increasing scale factors. While these
comoving wormholes do solve the structure equations, it
may be more likely for FRW wormholes to evolve in time
in such a way that they decouple from the expansion.
Thus we are led to consider decoupled dynamic
wormholes, where the full nonlinearity of the structure
equations (9a) and (9b) comes into play.

The strategy for solving the general time-dependent
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case involves selecting a relevant scale factor R, a surface
energy density o, and an equation of state P =P (o) sub-
ject to (10). First let us assume a power law expansion
R(t)=R;(t/t;)?. Then the choice for a(z) that most
simplifies (9a) and (9b) is a(r) =a;(t/t;)' ™7, which
renders all the denominators constant. While these solu-
tions are ad hoc, they are the simplest ones and are not
implausible, and hopefully they capture the qualitative
dynamics of more general wormhole physics, since they
describe wormhole throats expanding faster than the
Hubble flow. Here R; and a; are the scale factor and
throat function at some initial time #;, Now both P and o
go like ¢ ~! and the equation of state is in general non-
linear. The relevant power law for early Universe appli-
cations is p= 1+, i.e., a radiation dominated expansion.
For this case the surface energy density is o=cola’,
where €p is a constant with units of mass given below.
Then the exact solution of (9a) and (9b) has

a(t)=a;(t/1;)"?, (12)
and an equation of state as given below. Note that the
wormbhole throat function is related to the background ex-
pansion: a/a =R/R. Moreover, the wormhole motion is
decoupled from the expansion since (1/aR)d(aR)/dt
> R/R. The connection between proper and cosmic time
implied by (8) is t =const X 7, where the constant of pro-
portionality is greater than 1, and depends on a;, R;, and
IR

For each t;, there is an upper bound on the size spec-
trum of initial wormhole throat radii which follows if we
assume no point on the throat can move faster than the
speed of light [14]: |B| <1 where f=2aR/c is a constant
for the class of solutions treated here (with p=4%). For
radiation dominated expansion, this condition implies

aiR(t;) < (@R)max=ct; , (13)
where R(t;) is the scale factor for radiation dominance
evaluated at some initial time #; [15]. The constant €g ap-
pearing in the surface energy density is given by (cf. [6])
(restoring ¢ and G)

2 -1
ca?_|_p+p
=— 14
O T 416y | (=g ] (14)
and is negative, as for the comoving case.
The equation of state for the p =% case is given by
—+ 2
P=— o l_—zéz__ , (] 5)
2 | 1xB

with sign choices as in (9a) and (9b). Note specifically
that in the B— 0 limit P = —0/2 which corresponds to
comoving wormholes in agreement with (11) and the sub-
sequent discussion. Other interesting limits are =1, on
choosing the plus sign in (15) where P = —30/4; while
for B=1/+/2, the negative sign solution yields P =0, cor-
responding to pressureless negative energy ‘“‘dust”; and
B— 1 where P diverges.

Thus far, we have dealt with aspects of a single comov-

ing or decoupled wormhole in a FRW background. It is
clear, however, that the above construction can be applied
an indefinite number of times and will lead to an explicit
solution of Einstein’s equation with an arbitrary number
of wormholes. In fact, this construction is an application
of the connected sum operation, familiar from algebraic
topology. In general, we let M; and M, be two space-
times and remove from each the interiors of the four-
dimensional disks D, CM; and D,CM,, and then iden-
tify the boundary sets up to homeomorphism h:0D;
— 8D,. The resulting manifold defines the connected
sum of J; and My M # My [16]. The operation # is
both commutative and associative. This latter property
implies that multiwormhole solutions of Einstein’s equa-
tion can be constructed unambiguously.

Let us end with a discussion (and some speculations)
on the applications of our results. To be of interest,
wormbholes need only stay open long enough for the radia-
tion to traverse the throat. For the class of solutions
treated here, a time scale is set by the frequency of the
radiation traversing the throat, Az~1/v, and a length
scale by A~a;R;. This follows since our wormholes have
zero-length throats, that is, a particle going down the
wormhole mouth in one region comes out the other end
instantaneously (see Fig. 1). Of course, we do not claim
all wormholes will be of this form, but this still serves as a
useful estimate of the wormhole lifetime needed to ini-
tiate thermal contact at a fixed frequency. With these
reservations [17] we now proceed with a purely illustra-
tive example. We assume a number density n(zp) of
Planck-sized wormholes (of radius /p;) at the Planck
time, and we let n(tp)) =ynp(y=const) [18] where
npr={(p;) 3% is the Planck number density. At some later
time ¢, the wormhole number density is n(¢) =ynp[Rp/
R()1%. The volume of space filled by the interior of
wormhole mouths (volume filling factor) is

o(0) =10 [M]S

npr | Ip

(16)

time
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FIG. 1. A spacetime diagram representation of a Friedman
cosmology with flat (E3) spatial sections, with the past light
cone for an observer at 4. Radiation received at 4 from oppo-
site directions was emitted from B and C. A wormhole connects
events in the past light cones of the otherwise spatially separat-
ed points B and C. A photon is shown going down the
wormhole in B’s past and exiting the wormhole in C’s past.
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For comoving wormholes ¢(z) =y, as expected, but let us
concentrate on dynamic p =+ wormholes where / =aR,
for which one finds ¢(r) =y[R(t)/Rp]3. Now, for exam-
ple, the average particle in the cosmic soup will have
traversed at least one wormhole by time ¢ if y> [R(¢)/
Rp] 7. For example, by the grand-unification time,
tgur~107% sec, a y=10""* allows thermalization.
Thermalization at even the high v end of the spectrum
can (small wormholes only) eventually lead to thermal
equilibrium at a later time for causally disconnected re-
gions. This in turn could provide a wormhole solution to
the horizon problem. It is important to introduce a word
of caution at this point. A more realistic ensemble of
wormholes would take both relative motion and unequal
throat masses into account. The former can lead to (i)
relative time differences between wormhole mouths
(second paper cited in [19] and [20]), even assuming the
chronology protection conjecture, and the latter can lead
to (ii) energy production/loss via wormhole mining [20].
We expect that effects (i) and (ii) will be reduced by
averaging over wormhole contributions, but this would
have to be checked by integrating over a more realistic
initial wormhole ensemble.

It is rather natural to have an inflationary era in the
early Universe. There may also be a cosmic wormhole
era in the early Universe. However, to compete with in-
flation, a wormhole cosmology needs to address a list of
other cosmological problems including flatness, mono-
poles (this may be solved directly in certain particle phys-
ics models), and density fluctuations. All these need fur-
ther study.
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