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Possible Spin-Liquid States on the Triangular and Kagome Lattices
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The frustrated quantum spin-one-half Heisenberg model on the triangular and kagome lattices is
mapped onto a single species of fermion carrying statistical flux 8 = vr. The corresponding Chern-
Simons gauge theory is analyzed at the Gaussian level and found to be massive. This provides a new
motivation for the spin-liquid Kalmeyer-Laughlin wave function. Good overlap of this wave function
with the numerical ground state is found for small clusters.
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The 2D spin-2 antiferromagnetic Heisenberg model has
attracted a lot of interest over the last few years. It
is widely believed that the ground state has long-range
Neel order on the square lattice [1]. On the triangular
and kagome lattices, the situation is much less clear due
to the geometric frustration. In the case of the triangu-
lar lattice, Huse and Elser have constructed variational
wave functions with long-range order and low energies [2].
Numerical and analytical evidence were found support-
ing this scenario [3]. Recently, however, Singh and Huse

[4] have calculated the sublattice magnetization using a
series expansion method, which is believed to be accu-
rate, and found that the ground state is nearly disordered
for the triangular lattice and strongly disordered for the
kagome lattice due to the large degeneracy of classical
ground state configurations [5]. The large N calculation
of Sachdev [6] has also found disordered ground states on
both lattices for small enough spin.

Recently a two-dimensional extension of the Jordan-
Wigner transformation, which essentially treats hard-
core bosons (see below) as fermions with flux tubes, or
equivalently, fermions coupled to a Chem-Simons gauge
field, was developed [7]. The advantage of this approach
is that the unwanted hard-core condition in the boson
picture is taken care of by the Pauli principle, but as a
price one has to introduce gauge interactions to fix the
statistics. We applied this method to both triangular
and kagome lattices. At mean field level, the fiux carried
by the fermions is smeared out to form a uniform back-
ground magnetic field. If we neglect the Ising part of the
Hamiltonian (which becomes a nearest-neighbor repul-
sive interaction between fermions after the transforma-
tion) for the moment, we have noninteracting fermions
moving in a constant magnetic field. Numerical diag-
onalization yields two and six Landau subbands, with
large excitation gaps [8] at the Fermi level of 2v 3J and
1.46J for the triangular and kagome lattices, respec-
tively (J is the coupling between neighboring spins). The
Hall conductance is quantized in such cases, in the form
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v. In the continuum v is just the Landau level
filling factor v = &, where 8 is the statistics angle which
is vr in this case. However, on a lattice, v is one of the
TKNN [9] integers, not necessarily equal to $. If one

examines Gaussian Quctuations of the gauge field about
its saddle point (mean field), one can integrate out the
fermion degrees of freedom (which are quadratic in the
action) and expand the effective action for the gauge field
about its saddle point to second order to obtain [10]

8[A„] = So+ d'ddt -E'(Z, t) ——a'(Z, t)

d ddt v —— e gA~I'2 1r VA

g pv

where So is the mean field action, and e and g are the
mean field values of the long-wavelength, low-frequency
dielectric constant and diamagnetic susceptibility, re-
spectively. As noted by Fradkin [10], the fiuctuation
is massless if and only if the Chem-Simons term in the
action is canceled, i.e. , v = &. This is easy to under-
stand in terms of self-consistent linear response. Assume
there is a long-wavelength, low-frequency Buctuation of
the density of the fermions. Since the fermions carry
Aux, there should be a Huctuation of magnetic field in
the same mode. According to Maxwell's equations, there
will be a nonzero line integral of electric field around any
region I':

1dc h OdN
c dt e 7r dt

where l and N are the Aux and number of particles in
that region, respectively. Now look at the response of N
to this electric field:

dQ dN - - o „dc=e cr yE dl=—
dt dt , c Ck

The above equations are consistent if and only if v = &.
This is guaranteed in the continuum, where Fetter et al.
did find a gapless collective mode [11]. We have com-
puted the TKNN integer for the triangular and kagome
lattices using the method of MacDonald [12] and found in
both cases v = —1 P 0

= 1. Hence we expect the Chern-
Simons field to be massive and the quantum XY model is
therefore likely to have a gap assuming no broken trans-
lation symmetry. This gap may be stable against the
Ising perturbation causing the Heisenberg model to have
a spin-liquid ground state on these lattices [13].
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By making analogy to the fractional quantum Hall ef-
fect (FICHE), Kalmeyer and Laughlin (KL) suggested a
very interesting spin-liquid wave function for the Heisen-
berg model on the triangular lattice [14]. It was found
to have reasonably good energy (about 10% higher than
the best numerical estimate). We believe the massive-
ness of the Chem-Simons theory demonstrated here pro-
vides a more fundamental motivation for quantum Hall
physics in frustrated spin systems. Furthermore, within
the single-mode approximation [15] an excitation gap in a
2D system requires a Jastrow-like wave function whose
square is a 2D one-component plasma in order for the
structure factor to vanish at small q: S(q) q2. SU(2)
symmetry uniquely restricts the coefBcient of the plasma
charge to be that given by the KL wave function ()n = 2).
The spin- ~ excitations argued by Laughlin [16] similarly
require m = 2 in the Bose representation. These argu-
ments strongly suggest that a spin-liquid wave function
should be of the Kalmeyer-Laughlin type.

In the rest of this paper we first brieHy review the KL
wave function, and prove that it is equivalent to a pro-
jected underlying fermion wave function. We apply this
new wave function to the kagome net, and calculate its
energy using the Monte Carlo method. Then we calcu-
late the overlap between this wave function and the exact
wave functions on small clusters. Finally we summarize
and discuss our results.

The Hamiltonian for the antiferromagnetic Heisenberg
model is

a=J) s, s, , (1)
(ij)

where J & 0, S, is the spin operator at site i, and the sum
is over nearest neighbors. Following Ref. [14], we map
the spin operators to hard-core boson operators. The
Hamiltonian in this representation is

unit cell. The bosons have a nearest-neighbor repulsive
interaction. In the ground state, the lattice is half filled,
which means the Landau level filling factor is one-half.
By making analogy to the FHQE, they suggested the trial
wave function for the bosons:

4(zi, . . . , zN) = (z; —z, ) G(zg)e 4'"'
I 4 ~

i&j

where G is a gauge phase factor [14]. From experience
with the FICHE we know this is a liquid state with hid-
den off-diagonal long-range order (ODLRO) due to the
binding of vortices to charges [17]. Since ODLRO corre-
sponds to chiral order in the present spin problem [18],
(2) actually describes a chiral spin liquid that breaks T
reversal symmetry.

The state (2) has some nice features, including being
a singlet in the thermodynamic limit, but it cannot be
generalized to non-Bravais lattices, such as the kagome
lattice. Also it becomes a singlet only when the system is
infinitely large, so it is not suitable for finite size studies.
For these reasons, we want to find a more general wave
function that reduces to (2) on the triangular lattice in
the thermodynamic limit, and has better finite size prop-
erties. To do that, we assume the spins are carried by
spin-~ fermions trapped on lattice sites, and try to de-
scribe state (2) in terms of them. We can express the
spin operators in terms of these fermion operators:

Q~ =S =c c'g

Gj = S =c gcjy)S '

where ct&
&

are creation operators of up (down) spin
fermions at the jth site. 3ust as for the bosons, there
is a hard-core condition on the fermions: njt. + njy = 1.

In the second quantized representation, the state (2) is

I+) = ) &(zi, , zN)a'. , a.'„IO~)
(Z1 ) ~ )ZQ

H=T+ V,

T = —) (ata, + a~ta, ),
( )

Here the sum is over all possible boson configurations.
IOb) is the boson vacuum state. Since it corresponds to
the state that all spins are down, we haveV = J) n, n) + const .

N,
The notation is the same as in Ref. [14]. As was shown

0 = ci 0
by KL [14], on the triangular lattice, this new Hamil- Oi, — ci Of

tonian describes hard-core bosons moving in a uniform
magnetic field with field strength one flux quantum per where IOf) is the fermion vacuum state and N, is the

I number of sites. So we get

(Z1).. . , ZR', Z[1],... , Z[W] )

N,

) = „„). ( i, , N) .', c.„c',~,c.~, c„,log).
(Z1 )+ )ZQ )Z[1] ) ~ ~ ~ )Z[+] 3' k=1

Here z~j~ = z~+j denotes the coordinate of jth down spin fermion. The sum is over all possible fermion configurations
satisfying the hard-core condition. We do not distinguish between cj and cz Gj and Qz etc. , if z is the complex
coordinate of the jth site. Rearranging the order of fermion operators and neglecting constant factors, we have

1V
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Here F(z&, . . . , z[~]) is a totally antisymmetric factor:

IF(z& z2~)l = const, F(. . . , z~, , zk, . . . , z2~) = F—(. . . , z~, . . . , z~, . . .).
We can take F to be

F = (z, —z, ) '(zN —z[g) (zg —zp])
i&j k, L&N

If we go back to the first quantization, the wave function that describes the underlying fermions is just
N

)f (zl, . . . , z[N]) = (z' z, ) (z[,1 z[,l)

4'f(zq, . . . , z[~]) = (z, —zi)(z[,]
—z[g). (4)

i~j(N
The right-hand side of Eq. (4) is just the product of

two Vandermonde determinants [19], which is what one
gets when both spin states of the first Landau level are
fully occupied. Since up and down spin particles occupy
the same spatial Slater determinant, the resulting state
must be a spin singlet, even after projection. This pro-
vides another way to prove that the state (2) is a singlet

~ 4 ~ h J h

i&j(N k, l &N

Obviously a fermion wave function should be antisym-
metric under exchange (including spin variables), but
here we neglect spin variables in the wave function and
treat up and down spin particles as if they were distin-
guishable, so the above wave function is legal. Since we
have the hard-core condition on fermions, what we really
mean by (3) is the state that is projected to the subspace
with no double occupancy. Hence it is a well defined wave
function for the original quantum spins.

Now we can use a theorem proved by KL [14]:

(~. —~, ) = ~.~(~.) -']'"',

where (~ is the complex coordinate of the jth site, Co is
a constant, and G(Q) are the gauge phases [14]. This
theorem holds only on the triangular lattice in the ther-
modynamic limit. Using it in (3) we get

(zk z[l]) (3)

Here t(L&) is a magnetic translation operator [21]. This
problem was solved for the torus geometry by Haldane
and Rezayi [21]. The result is (up to a constant factor)

in the thermodynamic limit. The advantage of (4) is it
gives a singlet even on finite size systems, and it can be
generalized directly to non-Bravais lattices.

As a test of the equivalence between (2) and (4), we
calculated the energy of (4) on a triangular lattice. The
calculation of the Ising part of the energy is straightfor-
ward using Monte Carlo, and the total energy is exactly
3 times that (for any system size). The extrapolated re-
sult is —(0.48 + 0.01)J per site, which agrees with the
KL result [14]. We have found that in our case the data
converge much faster, i.e. , the finite size results are much
closer to the extrapolated result. This tells us that (4)
is better for finite size study. The energy we get for the
kagome is —(0.399 + 0.001)J per site, about 8% higher
than the best numerical estimate [20].

We have also studied the overlap between (4) and the
exact ground state on small clusters, where we need to
minimize the finite size eKect by applying periodic bound-
ary conditions (PB). The wave function (4) satisfies open
boundary conditions, so we need to solve the wave func-
tions with PB:

~(~y)4(z) = e"@(z)

@f —— 0& Zi —Zj 7 8] Z i]
—

Z[j] 7 6I] Zk —Zo 7. 9$ Z[k]
—Zo 7

i,j&K k k

Here e&(z~w) is the elliptic theta function [21],
L2e' /Lq, Lq and L2 are the vectors that determine the
shape of the parallelogram, and 6 is the angle between
them. Zo is the center-of-mass coordinate determined by
Pq and P2. In most cases we are interested in, it should
be set to zero [22]. Like Eq. (4), Eq. (6) also describes a
singlet state. A truly nondegenerate ground state wave
function must be real [14]. So instead of using the com-
plex wave function (6) directly, we use @ye'&+4'&e '& in
the overlap calculation and use P as a variational param-
eter. We applied it to several clusters of the triangular
lattice containing an even number of spins and having
the shape of a parallelogram (torus geometry [21]) and
also one with the shape of a hexagon (twelve spins). The
results are listed in Table I. We find that the square of
the overlap remains large in systems with up to twenty

TABLE I. Overlaps and variational energies on small clus-
ters of the triangular lattice. Energies are in unit J per site;
E„ is the variational energy.

Cluster

Hexagon (12)
3x4
4x4
6x3
4x5

]Overlap]

0.966
0.821
0.000
0.554
0.493

—0.591
—0.519
—0.459
—0.491
—0.481

Exact energy

—0.6103
—0.5776
—0.5347
—0.5811
—0.5581

spins (4 x 5). The energies we get are close to the Monte
Carlo result, which means the change of boundary condi-
tion does not change the short distance correlations. For
reasons we do not understand yet, the overlap is exactLy
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zero in the 4 x 4 cluster. We have verified that 4f has the
correct symmetries (spin rotation, translation, 180o rota-
tion and mirror reHection of space). Apparently there is
some additional hidden symmetry which does not match
that of the numerical ground state. We have done the
same calculations on kagome clusters [20] with twelve
and eighteen spins. Again we got zero overlaps, probably
for similar reasons. The energies, —0.420J and —0.418J
per site, respectively, are close to the Monte Carlo result.

If the ground state of the triangular lattice has three
sublattice order, such order is suppressed on clusters 3x4,
4 x 4, and 4 x 5 due to incommensurability, but is not on
6 x 3 and the hexagon with twelve spins. Our data sug-
gest this commensurability is a weak e6'ect. Both state
(6) and the true ground states have a lot of symmetries
(rotation, translation, etc.). It could happen that there
are so few states of the right symmetries available that an
arbitrary combination of them will have a decent overlap
with the ground state. By assuming singlet states are
uniformly distributed in the momentum space, we find
the number of states with the right symmetry is of order
1000 in &he case of twenty spins, and yet the square of the
overlap is rather large: 0.493. The twelve-spin hexagon
has additional symmetries, so the significance of the re-
markably large squared overlap of 0.966 is unclear.

Sachdev [6] has an alternative proposal for spin-liquid
ground states where no symmetry including T reversal is
broken. His state shares the features of having an excita-
tion gap and spinon excitations with the present one, and
has the advantage of connecting smoothly to Keel ordered
states at large S. The spinons are bosonic in his picture.
Laughlin [16] argued that the spinons should be semions,
but this issue remains controversial. The large overlaps
we obtain suggest chiral order might be present in the ex-
act ground states of the clusters [23], although Chalker
and Eastmond found no obvious symmetry breaking in
their finite size study on kagome [5].

The central result of this paper is the demonstration
that treating spins as fermions carrying flux tubes leads
to a massive Chem-Simons theory on frustrated lattices.
This provides a new and fundamental motivation for
quantum Hall types of spin-liquid physics. We have de-
veloped the formalism needed to compute the overlap
between these wave functions and the exact ground state
and we have obtained large overlaps for small clusters.
It would be highly desirable to see these calculations ex-
tended to large lattices, although this will require con-
siderable numerical eKort.
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