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Dynamics of a Disordered Flux Line Lattice
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Flow behavior of a flux line lattice in the layered superconductor 2H-NbSe2 is studied with a magnetic
field parallel to the layers in the vicinity of a pronounced peak eAect. A striking crossover in the
current-voltage characteristics is observed as the system enters the peak regime. The results yield a
nonequilibrium phase diagram where conventional depinning of an elastic medium occurs for a rigid lat-
tice. A defective (plastic) flow instability occurs as the lattice softens, but heals at large drives. This de-
fective flow dominates the dynamics for a very soft lattice.

PACS numbers: 74.60.Ge, 7 l.45.Lr, 62.20.Fe, 74.60.3g

Dynamics of' an Abrikosov flux line lattice (FLL),
pinned by quenched random disorder, is representative of
a generic problem of collective dynamics of a disordered
elastic medium with many degrees of freedom. The com-
petition between interaction, i.e., the elasticity of the
medium and disorder in the form of pinning centers leads
to a threshold behavior. Above the threshold for depin-
ning, the system moves collectively. In a pioneering theo-
retical work, Fisher fl] has suggested that the depinning
transition represents a "dynamical critical phenomenon. "
The subject is of wide interest since similar behavior is
observed in a broad class of systems, such as the incom-
mensurate charge density wave (CD%) [2], two-fluid in-
terface in a random medium [3] or a rough substrate [4],
and Wigner solids in semiconductor heterostructures [5].
Despite the easy tunability of the interaction through the
magnetic field, little is known about the dynamics of the
moving FLL in the two different regimes of behavior,
where interaction and disorder, respectively, dominate the
dynam ics.

In this paper we present an experimental determination
of a "nonequilibrium phase diagram" describing the dy-
namics of the FLL in both regimes. We find a dramatic
change in the /-V curve as the interaction among the Aux

lines is varied by varying the magnetic field in a low tem-
perature superconductor. We attribute this to a cross-

overr

between a coherent motion of an elastic medium for
a relatii ely stiff FLL, to a primarily defective ("plastic" )
flow of a soft FLL Importantly, the .plastic deformations
heal at large drives and the elastic regime recovers. This
recovery occurs at progressively larger drives as the FLL
softens, such that the plastic regime dominates the dy-
namics for a very soft lattice.

Measurements were performed on single crystal sam-
ples of the layered superconductor 2H-NbSe2. The sam-
ple (of dimension I mmx I mm&30 pm) has a T, of 7.2.
K (width —20 mK) and a residual resistance ratio
R —20. Both the magnetic field and the current are in

the a-b plane and orthogonal to each other so as to max-
imize the driving Lorentz force FT=Jx B. Pinning is
weak in as-grown single crystals, i.e., the FLL is well
formed; critical current density is in the 10' —10 A/cm
range. The system is well described by the anisotropic

Ginzburg-Landau (GL) model [6]. The GL parameter
for Hlla, b is K~] —30; the anisotropy factor in H, . q be-
tween Hlla, b and Hllc is [6] —3.3.

Standard current versus voltage curves are used to
measure the critical current I, needed to depin the FLL
using a condition of 100 nV as the onset voltage. Low
resistance ( ( 100 p 0) contacts were obtained by Ag-In
solder. The absence of Joule heating was confirmed by
(I) reversibility of the I-V data obtained for I increasing
and decreasing, (2) ensuring an exact agreement between
the differential resistance obtained from the dc I-V curves
and from an ac technique using a 1 kHz modulation
current, and (3) making the measurements with the sam-
ple submerged in liquid He.

The variations of the critical current density J, and the
pinning force Fz =

~ J, && B~ are shown in Fig. 1(a). The
variation of F„with H, and most specifically the peak in

F„near H, .2 ( —7 T), i.e., the "peak efTect, " has been
studied extensively [7]. Pippard [7] attributed it to the
softening of the shear modulus of the FLL and the easy
compliance of the FLL to the pinning configuration,
which increases Fz. Subsequently, Larkin and Ovchinni-
kov (LO) [8] proposed the collective pinning theory. Dis-
order destroys the long range order of the FLL. Short
range order persists with correlation lengths I,. and R, ,
respectively parallel and perpendicular to H. The pin-
ning force F~ is given by

Fp = i3, & Bi = (W/V, ) ' (I )

where W is a measure of the pinning: W=Np(f ); Nz is
the volume density of pins and f is the elementary pin-
ning interaction with an interaction range r~-. The corre-
lation volume is V, . =R, L, where R, =(.C4.4t Cs6t rj)/W
and L, =(C44/C66) ' R, As . H approaches H, 2, the.
shear modulus C66 and the nonlocal tilt modulus C44
soften rapidly:

C66 = (H, p/4tr)(I —I/2tc )b(1 —b) (I —0.29b)/Iltc
(2)C„=(H '/4«) ( I b), —

where b =H/H, 2, the reduced field. T. his yields smaller
correlation lengths of the FLL and a rapid increase in the
pinning force. In the LO scenario, the peak occurs when

R, —ao, the lattice constant. In thin films a peak effect
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may also occur because ol' a dimensional crossover [9] as
I, becomes smaller than the sample thickness. For our
samples we estimate R, and I, to be —2 and 80 pm, re-
spectively, at H =4 T and the sample is in the 3D regime.

While the critical current has been studied extensively,
relatively little is understood about the I-V curves them-
selves. In a theoretical work in the specific context of the
CDW systems, Fisher [I] has focused on the nonlinear
dynamics above the onset of motion. He proposes, in

analogy with static critical phenomena, that a scaling be-
havior between force and velocity is expected for the on-
set of motion:

(3)
where g is the critical exponent. The standard single par-
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FlG. l. (a) Field dependence of the critical current density
and the pinning force density at T=4.2 K for HJ c (b) Evolu-.
tion of the I-V curves near the peak regime. Data for H =4.5
T, shown in the inset, is the typical behavior below the peak re-
gime. The opposite curvature is seen at H=5.8 T. Note the
curvature returns to concave upwards at 6.3 T. (c) Evolution of
the difterential resistance with increasing H. For H =4.5 T, it
grows monotonically to the Aux How resistance as shown in the
inset. At higher fields Rd develops a peak, crossing over to the
asymptotic behavior at larger currents. The arrows mark the
crossover current I„. Note that Ry is monotonic for H=6.2 T,
but it does not reach an asymptotic value at the largest avail-
ab)e currents. See the text for discussions.

ticle model [10] yields g= —,'; it is expected to be difl'erent

for systems with many degrees of f reedom. Little is

known about the validity of such a scaling for the FLL
and the value of' the exponent.

We find remarkable changes in the gross features of
the I-V curves as H is varied. In the regime below the
peak, the I-V curves are qualitatively identical, the volt-

age rising concave upwards from I, . A typical example is
shown in Fig. 1(b) for H =4.5 T. Note that this is the
generic form [10] of the I-V curves in FLL, interpreted as
a rounding due to a distribution of I,. values. As is obvi-
ous in Fig. 1(b), a dramatic change in the I-V curve
occurs as H enters the peak regime, becoming convex up-
wards with a pronounced inAection point, i.e. , change of
curvature [I I]. As H is further increased, the inflection
point moves to large values of I. The systematics of the
evolution of these curves with increasing H is better illus-
trated by the difl'erential resistance, Rd ( =d V/dl),
whose I dependence is shown in Fig. 1(c). Rd shows a
peak, i.e., a sign change of the curvature. The peak value
exceeds the normal resistance and thus does not represent
Rj, the asymptotic Aux How resistance. Indeed, Rd de-
creases rapidly at larger I and crosses over to the asymp-
totic Aux How resistance around a crossover current I,„,
marked by the arrows. The peak is smaller at larger H
but the crossover at progressively larger values of I; above
H =6.2 T, it is beyond the range of I values used. In this
range of H, scaling fits as in Eq. (3) are poor. The I-V
curves are also very noisy in this regime until I exceeds
Icr

These results occur reproducibly in the same sample
with a fixed quenched disorder where only the value of H
is changed and thus imply an important conclusion:
These remarkable differences are intrinsic properties of
the FLL. In a recent theoretical work on a 2D FLL, Shi
and Berlinsky (SB) [12] proposed that even in the case of
arbitrarily weak random potential, there are regions of
the FLL where the strain on the FLL is large enough that
"phase slips" occur in the FLL and the motion is unstable
to plastic How in the form of channels. This issue has
also been addressed by Coppersmith [13] in the context
of the CDW systems. Remarkably, our data in this field

regime, e.g. , H =5.6 or 5.8 T in Fig. 1(b), are nearly
identical to the results of SB.

SB find that the presence of these defects with density
n,i, which is explicitly force/velocity dependent, yields an
additional friction that reduces the velocity by an amount
proportional to (Dndao)n'R, /Cq|„where D is a diffusion
constant for mobile dislocations. Since this efTect is the
result of disorder due to the pins, nd is largest at small
forces and vanishes at large forces where pinning be-
comes insignificant. Indeed, SB find through numerical
simulations that nd depletes rapidly at larger drives. This
rapid increase in nd, as the force (or current I) is de-
creased, leads to the anomalous convex curvature of the
velocity (or voltage V) at threshold. They also note a

sign change for the curvature of the I-V curve, which im-
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plies the peak in Rd. All these features are seen in our
data: (1) a peak in Rd just above threshold, (2) its cross-
over to the asymptotic flux flow resistance above the
crossover current, marked /,.„ in Fig. 1(c), (3) the simul-
taneous occurrence of the anomalous I-V curves and a
marked increase in Fz, and (4) a recovery of defect-free
flow typically at —2I, . Moreover, the noisy dynamics
noted in this regime is clearly indicative of a defective
flow. A detailed theoretical description of the functional
dependence of nd on the applied force is needed for a

q uan t i tat ive .test.
%'e now return to the region below H =5 T in the flat

region for F and above H =6.2 T, i.e. , above the peak.
As can be seen in Fig. 1(b), the /-V curves for H =4.5 T,
i.e. , below the peak region and for H =6.8 T, i.e., above
the peak, are quite similar in shape. In both cases V

grows concave upwards from I, , although it is steeper for
the latter; indeed, this is the generic I-V curve for the
FLL [10]. However, as can be easily seen in Figs. 1(b)
and 1 (c) the evolution of the curve for the latter field
occurs as the plastic regime expands to fill the range of
forces used.

In both cases an apparent scaling behavior is obtained
with significant diAerences. Using the methods used for
CDW systems [14], we have attempted a scaling fit [Eq.
(3)]. For H =4.0 T, the apparent exponent /=1. 24

0.07, as shown in Fig. 2(a). Interestingly, this is the
same as has been measured for the CDW systems [14].
The scaling fit extends over two decades but deviates
downwards at current values —3-4 times 1,. where the
crossover to the asymptotic regime begins. The same re-
sult obtains for all fields studied below the peak regime.
Since this is in agreement with the general features for an
elastic medium [I], we attribute this regime to the
coherent motion of an elastic FLL.

For H above the peak, Rd also rises concave upwards,
as shown in Fig. 1(c), but fails to show a similar ap-

proach to the asymptotic value, i e., a current-
independent dV/dl that yields the flux flow resistance.
The scaling plots illustrating these major differences are
shown in Fig. 2(b). The exponent in this case is consider-
ably larger, g —1.75. Moreover, as Fz decreases with in-

creasing field above the peak, the scaling regime extends
to rather large reduced forces; for H =6.6 T, the scaling
form fits for the reduced value of current up to —8I,
This implies that the asymptotic flux flow behavior is not
obtained even at these relatively large forces.

Note that the exponents in these two regimes signify
difl'erent physical phenomena [15]. In the former, which
is interaction dominated, the exponent measures the col-
lective motion of the FLL which is uniform on average
[1]. In the latter, which is disorder dominated, it is a
measure of a nonuniform filamentary motion of a defec-
tive FLL and the growth of a tenuous structure of con-
nected paths, similar to percolation. Recent theoretical
work by Narayan and Fisher [15] speculates that in the
disorder-dominated regime, too, a scaling form for the
I-V curve may obtain. Our results lend strong support to
this proposal. Detailed theoretical calculations or simula-
tions are needed to compare with the results.

Combining these results we construct a nonequilibrium
phase diagram for the FLL dynamics shown in Fig. 3,
where the abscissa is the reduced field b = H/H, . 2, i.e. , the
density of the FLL and the ordinate is the reduced force
Fg/H, ;here the T. -dependent values [6] of the anisotropic
coherence length g and the thermodynamic critical field

H, are used. We attribute the regime below the peak to
be the conventional pinned FLL. F~ represents the depin-
ning of an elastic medium above which a coherent motion
of the FLL occurs. In this regime we obtain a scaling be-
havior with an apparent exponent close to the measured
value for the CDW, but whether this is the true critical
exponent must await further work [16]. In the peak re-
gime, the onset of voltage is due to a plastic flow instabili-
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FIG. 2. (a) Scaling behavior in the field regime below the
peak. The line marks the exponent 1.24. (b) Scaling behavior
above the peak; the line marks an exponent of 1.7S. Note the
large scaling range at H =6.6 T.
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FIG. 3. A nonequilibrium phase diagram of the FLL dynam-
ics. F~ is the conventional depinning threshold separating a
pinned FLL from a moving elastic FLL. Fp] represents the on-
set of' the plastic flow instability in a defective flux lattice. F„
marks a crossover between the plastic flow and a defect-free
elastic flow regime as the defects heal at large drives. b marks
the I indemann melting field for a disorder-free FLL. For fields
above the peak the pinned FLL may be amorphous. See the
text for discussions.
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ty of a defective FLL and is marked by F„l. The I-V
curve is qualitatively different and in agreement with the
simulations of SB [12] and, as they noted, outside the ap-
plicability of' the LO scenario. In this regime the motion
is noisy, as would be expected from such a filamentary
motion. There exists another line, denoted by a crossover
I'orce F,, (=i3„&&Bi), above which the defects heal and
the coherent motion of a defect-free FLL is recovered.
As the name implies, this is a crossover and not a transi-
tion. As H increases even further, the crossover field in-
creases very rapidly, and much of the available phase
space is dominated by plastic How. In this regime too, a
scaling form is obtained, but with a larger exponent.

Finally we return to the case of thermal disorder,
which cannot be ignored when H is very close to H, .2.

The Lindemann criterion [17] has been used extensively
for the high temperature superconductors to estimate the
possibility of melting of the disorder-free FLL. The con-
dition u/a —n O. I is satisfied on the melting line (H„„T„,)
in the H, T, space; here u is the rms fluctuation of the lat-
tice position and ao is the lattice constant. Using the an-
isotropy and nonlocal form of the elastic moduli [17], we

find the condition is satisfied for the reduced field —0.87,
marked by b„, in Fig. 3, close to where the peak in Fz
occurs at T=4.2 K. Since the correlation lengths of the
disordered FLL can be only smaller than that of a clean
FLL, the pinned FLL is most probably amorphous above
the peak. Note that in the likely case where the density
of pins exceeds that of the FLL, an amorphous FLL is

pinned [17] and the flux flow above the threshold resem-
bles a fluid flow [15]. Note, however, that this descrip-
tion of a Aux liquid is quite different from the case in the
cu pra tes.

To conclude, we have presented three central results.
(I ) A dramatic change in the I-V curves occurs in a 3D
FLL where a pronounced peak effect occurs which signals
a crossover between the coherent motion of an elastic
medium and a defective (plastic) flow [12,13] of a
"liquid. " (2) Scaling behavior indeed obtains in both re-
gimes with different exponents which suggests dynamic
critical phenomena belonging to different universality
classes [1,15]. (3) These results allow the construction of

nonequilibrium phase diagram of the FLL covering
both the interaction-dominated and disorder-dominated
regimes. Detailed results from either theory or simula-
tions of the dynamics of realistic FLL's are needed f'or
further tests of the hypotheses presented here. It will be
useful to know to what extent the proposed elastic-plastic
crossover is relevant to other analogous systems [13] and
whether the nonlocal elasticity enhances the plastic flow

instability in a 3D FLL. These studies may lend insight
into the problem of friction and wear associated with
solid-on-solid motion [18].
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