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Low-Temperature Transport Through a Quantum Dot: The Anderson Model Out of Equilibrium

Yigal Meir
Department of Physics, University of California, Santa Barbara, California 93I06

Ned S. Wingreen
NEC Research Institute, 4 Independence 8'ay, Princeton, New Jersey 08540

Patrick A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 7 December 1992)

The infinite-U Anderson model is applied to nonequilibrium transport through a quantum dot contain-
ing two spin levels weakly coupled to two leads. At low temperatures, the Kondo peak in the equilibrium
density of states is split upon the application of a voltage bias. The split peaks, one at the chemical po-
tential of each lead, are suppressed by nonequilibrium dissipation. In a magnetic field, the Kondo peaks
shift away from the chemical potentials by the Zeeman energy, leading to an observable peak in the
differential conductance when the nonequilibrium bias equals the Zeeman energy.
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The behavior of an atomic impurity coupled to conduc-
tion electrons has become one of the paradigms of con-
densed matter physics. Competition between on-site
Coulomb repulsion and band hybridization produces the
Kondo eAect: a crossover from weak to strong coupling
between the localized and band electrons below the Kon-
do temperature T~. Since it is a daunting task to drive
the host metal out of equilibrium, only the equilibrium
properties of Kondo impurities have been explored so far
[ll.

In this paper we address a new Kondo system in which
nonequilibrium is routinely achieved, namely, a quantum
dot weakly coupled to leads. It is already evident that
Anderson's model [2] for a Kondo impurity —discrete, in-

teracting levels coupled to a band —also describes quan-
tum dots. Experimentally, the discrete spectrum of a sin-
gle dot has been probed by transport [3-5] and capaci-
tance [6] spectroscopy, while the strong on-site Coulomb
interaction is observed in Coulomb-blockade conductance
oscillations [4,5,7]. Theoretically, Anderson's model has
provided an excellent description of these experiments in

both equilibrium [8,9] and nonequilibrium [10]. Howev-
er, it is only the high-temperature regime that has been
explored experimentally, while it is below T& that the
Kondo eAect emerges.

Since the Anderson Hamiltonian describes the quan-
tum dot, at low temperatures the dot must behave as a
Kondo impurity. In fact, it was argued [11] that at
zero-temperature equilibrium the Kondo resonance in the
density of states of spin-degenerate levels will always lead
to perfect transparency of the quantum dot at the Fermi
energy. In contrast, above the Kondo temperature, reso-
nant tunneling occurs only at a discrete set of Fermi ener-
gies. Furthermore, the leads coupled to the dot are easily
biased to nonequilibrium and the dot potential can be
swept continuously with a gate. Thus new physical ques-
tions which were not relevant to magnetic impurities can
be raised. In particular, what happens to the Kondo
effect out of equilibrium [12]? Since transport measure-

ments on single quantum dots require significant applied
bias, this question is of immediate importance.

In this Letter we combine several approaches [pertur-
bation theory, noncrossing approximation (NCA) [13],
equations of motion (EOM) [14], variational wave-
function calculation [15]] to present a consistent picture
of low-temperature, nonequilibrium transport through a
quantum dot. For spin-degenerate levels at equilibrium,
the Kondo peak [16] in the density of states at the chemi-
cal potential [Fig. 1(a)] leads to resonant transmission
through the dot [11]. A voltage bias between the left and
right leads causes the Kondo peak to split, leaving a peak
in the density of states at the chemical potential of each
lead [Fig. 1(b)]. The split Kondo peaks are suppressed
by a finite nonequilibrium lifetime, due to dissipative
transitions in which electrons are transferred from the
high chemical potential lead to the low chemical potential
one. Upon application of a magnetic field, the Kondo
peaks shift away from the chemical potentials by the Zee-
man splitting, but in opposite directions for each spin
[Figs. 1(c) and 1(d)]. Interestingly, therefore, when the
chemical potential splitting equals the Zeeman splitting,
a Kondo peak shifted away from one chemical potential
crosses the other chemical potential. We predict an ob-
servable peak in the differential conductance at this cross-
ing [17] [Fig. 2(b)].

We model the quantum dot and its leads by the Ander-
son Hamiltonian [2]

H = g ek~k~kcz+ g eaCo C(z
o;kCL, R 0'

+ Un in i+ g (Vk~k c +H.c.), (1)
crk G L, R

where ck (ck ) creates (destroys) an electron with mo-
mentum k and spin cr in one of the two leads, and ct (c )
creates (destroys) a spin-tr electron on the quantum dot.
Since we are interested in temperatures smaller than the
orbital level spacing in the quantum dot, we consider only
a single pair of levels on the dot with energies
et =eo+ Ae/2 and ei = eo —d e/2. The third term in (1)
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FIG. 1. Density of states for an Anderson impurity symmetri-

cally coupled to two leads with chemical potentials pL and

p~ (=0) and Lorentzian bandwidth 2W, from the equations-
of-motion method (continuous line) and the noncrossing ap-
proximation (dashed line). The impurity has two spin states
with energies t. t and eg and an on-site interaction U ~. All
energies are in units of the total coupling to the leads, I. The
bandwidth is 8'=100 and the temperature is T=0.005, rough-

ly a factor of 2 lower than the magnetization Kondo tempera-
ture [13J. (a) The equilibrium (pL =0) density of states at zero
magnetic field e~ =e~ = —2.0, exhibiting a single peak at the
Fermi level. (b) The nonequilibrium (pl, =0.3) density of
states at zero magnetic field et =e~ = —2.0, with a suppressed
Kondo peak at each chemical potential. (c) and (d) The non-

equilibrium (pL =0.3) density of states for spin up (c) and spin
down (d) at finite magnetic field et = —1.9, et = —2. 1. The
Kondo peaks shift away from the chemical potentials by the
Zeeman splitting h, t. =0.2; the shift is up in energy for the up
spin and down in energy for the down spin.

(2)
In Eq. (2), r (cu) =rL(ru)r~(ru)/[r'(ru)+r~(ui)], and
G" (ro) is the Fourier transform of the retarded Green
function, G~(r) = ie(r)([c~(r), c (0)~j).

The main features of the density of states can be deter-
mined via perturbation theory in the hopping matrix ele-
ments Vp . For each spin state at infinite U, we find, in
addition to the single-particle resonance at t. , logarith-

describes the Coulomb interaction between the two local-
ized spins which we take to forbid double occupancy [18]
(U ~), while the fourth term describes the hopping
between the leads and the dot.

Our aim is to calculate the current through the dot, J,
which for the case of proportionate couplings to the leads,
r'(co) =)urn(co), where rLt~'(ro) =2m&k~, (g)~Vp. ~'
x 6(co —ek ), can be expressed [19] in terms of the densi-
ty of states, —(I/ir)imG'(co), as

1I=—„g„dru[IL(ro) fp(ru)]r (ro) ———ImG" (u~)
Q' 7E'

mic divergences, at T =0 and at order V, signaling Kon-
do peaks at pL/p —h, e for the low-lying spin and at
pL/p+de for the high-lying spin. In order to calculate
the full Green function G" (ni) we use both the NCA [131
and an EOM method [8,14]. The NCA is based on an
exact mapping of the infinite-U Anderson Hamiltonian
(1) onto a slave-boson Hamiltonian. If vertex corrections
are neglected, the propagators for the empty site (a bo-
son) and the singly occupied site (fermions) obey a set of
coupled integral equations. Numerical solution of these
equations has been very useful in obtaining quantitative
results for the equilibrium system [13,20]. In this work
we have generalized the NCA to nonequilibrium to
produce densities of states, occupations, and the non-
linear current (2). However, as a large spin-degeneracy
(large-%) technique, the NCA produces a Kondo peak
even for the noninteracting system (/V =1). Consequent-
ly, while quantitatively reliable at zero field, the NCA
gives rise to spurious peaks in the density of states at the
chemical potentials pl and pg at finite magnetic fields.
Therefore, an EOM method was employed to comple-
ment the NCA. This method corresponds to a resumma-
tion of low-order hopping processes and is known [14] to
give the right qualitative behavior at low temperatures.
More importantly in the present context, being exact for
A =1, the EOM method gives rise only to the proper
Kondo peaks, even for finite magnetic fields (as identified
by perturbation theory).

The EOM method consists of diAerentiating the Green
function G'(t) with respect to time, thereby generating
higher-order Green functions which eventually have to be
approximated to close the equation for G'(t). The pro-
cedure employed here is the same as the one used in Ref.
[8], which in the infinite-U limit leads to

I —(n-)
G'(ru) =

m —e.—zo.(m) —r, .(~) '

wltll Zo~(cu) =gt& c g, g i Vp~i /(co Et~+ lrl), and

v„;l~fii ( I,;)r. ) (ru) =
k EIRE , 8~+ E~ El,~+i It/2Z'~

(4)

where fL~p(e) is the Fermi distribution in the left/right
lead and r —is the intermediate-state lifetime. G (cu) has
an overall amplitude proportional to I —(n-), where (n-)
is the occupation of the other spin state. Quantitative
calculation of the occupations is beyond the scope of the
EOM in the present approximation scheme. Accordingly,
we use the occupations resulting from the NCA, which
are known to be quantitatively reliable in equilibrium
[20].

Within the EOM scheme, the Kondo peak for spin a.
results from the self-energy, Z~ (co), due to virtual inter-
mediate states in which the site is occupied by an electron
of opposite spin, c7. The remaining self-energy, Zo (ro), is
the exact self-energy for the noninteracting case. Be-
cause of the sharp Fermi surfaces at low temperature,
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Re[2| (to)[ grows logarithmically at ro =pt R ~ he, giving rise to peaks in the density of states near those energies. The
peaks for the high-lying spin (low-lying spin) appear near co=pt. tt+Ae(ro=pt. tt

—Ae). At zero-field and zero-
temperature equilibrium, the intermediate states giving rise to Zl (co) have an infinite lifetime, and the true peak in the
density of states has an amplitude corresponding to the unitarity limit [16]. Once either a voltage bias or a magnetic
field is applied these intermediate states acquire a finite lifetime z-, which cuts oA the logarithmic divergence of
Re[2| (r0)j, resulting in a suppression of the peak amplitudes. The lifetime r of spin cr can be calculated using
second-order perturbation theory. For a deep level at zero temperature and for constant I we find

1 1
I f 'H(pa pa+ &

z g 2&~ A, B=L,R p~
a'

which explicitly shows that the lifetime is nonzero onl
for finite bias or finite magnetic field.

In Fig. 1, we plot the density of states for two spins
symmetrically coupled to two leads, consisting of Lor-
entzian bands of width 2W, so that I (ru) =I (co)
=I W /2(ro + W ), with I =1 and W=100. Results are
shown for the NCA (dashed lines), which is reliable for
zero magnetic field, and for the EOM method (continu-
ous lines), which has the correct Kondo peak energies for
all magnetic fields. In equilibrium and zero magnetic
field, the density of states exhibits a single peak at the
Fermi level as expected [16] [Fig. 1(a)]. As the chemical
potentials split, the Kondo peak also splits, giving rise to
a suppressed Kondo peak at each chemical potential [Fig.
1(b)]. Upon the application of a magnetic field, the den-
sities of states for the two spins become diA'erent and the
Kondo peaks shift away from the chemical potentials by
the Zeeman splitting [de=0.2 in Figs. 1(c) and 1(d)].
The peaks move up in energy for the high-lying spin [Fig.
1(c)l and down in energy for the low-lying one [Fig.
1(d)].

The main conclusion of Fig. 1 is the emergence of new

energy scales not present in equilibrium. The Kondo
peak in the equilibrium density of states splits out of
equilibrium to two peaks spaced by the chemical potential
difference hp and suppressed from equilibrium by the
finite dissipative lifetime r In Fig. 1.(b), the lifetime
broadening 6,/r is about the same as the temperature.
To understand the shift of the Kondo peaks with magnet-
ic field, it is helpful to recall how the peaks in the density
of states derive from the eigenstates of the system. At
T =0, G" (t ) involves transitions from the N-particle
ground state to all possible N+1 or N —

1 states. At
8 =0 the correlated ground state has a finite amplitude to
have an empty site, and thus c (c ) can generate transi-
tions from the N-particle ground state to the ground state
with one more (one less) electron. Since, by definition,
the ground state energies diAer by the chemical potential,
the density of states includes a Kondo peak at the chemi-
cal potential. Within a variational calculation [15], we
find that at finite magnetic field the ground state is polar-
ized, and adding or removing an electron produces no
overlap with the new ground state. However, there is a
correlated excited state of opposite polarization which
gives rise to a peak in the density of states, shifted by the
diAerence in energy between polarization states, i.e., the

A+ Ecr

)(pit —e )

t Zeeman energy.
The current follows immediately from the densities of

states (2). In particular, the zero-temperature current is

the integrated density of states between the two chemical
potentials, weighted by the coupling to the leads I (co).
At zero magnetic field, therefore, the Kondo peak at the
Fermi energy gives rise to a linear-response conductance
of 2e /h for symmetric barriers, corresponding to perfect
resonant transmission through the quantum dot [11]. As
the bias is increased the diA'erential conductance falls
rapidly [Fig. 2(a)] [12]. This occurs first because the
diA'erential conductance due to a peak in the density of
states must fall oA once hp exceeds the peak width, and
second because the decreasing dissipative lifetime sup-
presses the peak amplitudes. Since the peaks in the den-
sity of states persist until the temperature is roughly one-
tenth the coupling to the leads, I, the peak in the
diAerential conductance is observable well above the
Kondo temperature T~ [Fig. 2(a), continuous line].

In a finite magnetic field the Kondo peaks are shifted
away from the chemical potential so they contribute very
little to the conductance in linear response. As the bias is
increased, however, the current-carrying region between
the chemical potentials grows until, at hp =h, e, it reaches
one Kondo peak in the density of states of each spin [see
inset of Fig. 2(b)]. Accordingly, in Fig. 2(b), where the
EOM density of states has been used, one sees peaks in
the diA'erential conductance at hp =Ac (continuous line).
In fact, by comparison with the NCA (Fig. 1), we expect
the EOM to underestimate the full strength of these
peaks. Experimentally, observation of peaks in the dif-
ferential conductance at hp =h, e would provide a "smok-
ing gun" for the presence of Kondo physics in transport
through a quantum dot.

In this work, we addressed the nonequilibrium behavior
of Anderson's model for a magnetic impurity. Experi-
mentally, the model describes low-temperature transport
through a quantum dot, where nonequilibrium is readily
accessible. We have shown that new energy scales
emerge in nonequilibrium. Specifically, the difference in

chemical potentials h,p and the inverse dissipation time
h,/r lead, respectively, to splitting and suppression of the
Kondo resonances in the density of states. Our finding
via several methods of two Kondo peaks in the nonequili-
brium density of states, one for each chemical potential,
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hc = 0
ks T = I'/20
k,T = r/200

the magnetization Kondo temperature [13] Ttr —(WI /
tr) '/ exp( —tr~p —e ~/I ). Even for p —e =2I [Fig.
1(a)], this exponential falloff leads to Ttr —I /100, a
prohibitive temperature for existing quantum dots. We
hope that this work will encourage further eAorts, both
experimental and theoretical, to probe the nonequilibrium
physics of interacting quantum systems.
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FIG. 2. Differentia1 conductance, edJ/dip, with ptt =0 vs

applied bias. (a) Zero magnetic field differential conductance
via the noncrossing approximation. (b) DilYerential conduc-
tance at the finite magnetic field, he=0. 2, used in Figs. 1(c)
and I (d), via equations of motion. As shown in the inset, when
the chemical potential difference hp reaches the Zeeman split-
ting h, e, the Kondo peaks in the density of states enter the re-
gion between the chemical potentials, giving rise to a peak in

the differential conductance.

contrasts with the results of Hershfield, Davies, and Wil-
kins [12]. They used a small-U expansion to study the
symmetric Anderson model in zero magnetic field and
found a single peak in the density of states which is des-
troyed with increasing chemical potential diAerence.
However, the Hartree solution about which they expand
has intrinsically only a single Kondo peak, at e +U(n ), -
and so is an inadequate starting point for nonequilibrium.

Our results have led to a novel experimental predic-
tion —when the Zeeman splitting of the spins, he, equals
the applied bias h,p, there will be a peak in the
difI'erential conductance, provided these energies are
smaller than the coupling to the leads, I, and smaller
than the depth of the levels, pL R

—e . Importantly, this
signature of the Kondo eftect persists for a wide range of
parameters to temperatures —I /20. The observation of
resonance widths I —40 peV by Foxman et al. [4] in

electrostatically defined quantum dots indicates a Kondo
peak in the diAerential conductance at T—20 mK. In
contrast, the Kondo contribution to the linear-response
conductance [11] is only apparent at temperatures below
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