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We propose a new model for transport in disordered solids and rocks which contain W distinct families
of transport paths (/V ~ 2), and study the behavior of its effective transport properties. The model is

relevant to transport in metals, polycrystals, porous catalysts, coalbed methane reservoirs, and geological
systems with fractures and pores.

PACS numbers: 66.30.—h, 05.40.+j, 47.55.Mh, 64.60.Ak

Transport in random systems such as disordered solids
and porous media is relevant to a wide variety of phenom-
ena, and has been studied for a long time [I]. However,
to date, most studies have been restricted to disordered
systems in which the disorder is associated with a sIngle
family of transport paths, characterized by a single trans-
port coeScient and a single transport equation.

In a great many cases, this simple description is totally
inadequate. Most natural rocks consist of interconnected
and intertwined networks of fractures and pores [2,3],
which implies two distinct porosities, and in some cases,
e.g. , carbonate rocks, one needs three degrees of porosity
to characterize rock [41. Transport in the fracture net-
work is very different from that in the pore network.
Catalyst particles and coalbed methane reservoirs usually
contain very large pores (macropores) and very small
pores (micropores) [5]. Transport in the micropores is
hindered in comparison with that in the macropores [6]
because the size of the molecules is comparable with the
size of the micropores. Moreover, while it is easy for
molecules to enter the macropores from the micropores,
the reverse is not true; i.e., the rates of exchange between
macropores and micropores are unequal. In metals and
polycrystals, transport often proceeds simultaneously
through two distinct families of paths, the bulk and the
grain boundaries, dislocations, and internal cracks [7].
Transport in such systems cannot be described by a single
classical transport equation. If there are N distinct fami-
lies of transport paths, the system should be modeled by
N coupled transport equations, with the coupling needed
to account for the exchange between the various transport
paths. Despite its significance, virtually no studies have
been made of transport in disordered media with multiple
distinct families of transport paths. In this Letter, we
present what we believe to be the first theory of transport
in disordered systems to account for multiple transport
paths [8].

The mode(. —We propose the following evolution equa-
tion for representing transport in N distinct families of
transport paths:

P;(t) =g[W,,P, (t) —W, , P, (t)]+E,P, (t) .
9E

Here P;(t) is an lV-dimensional column vector, the sth

component of which gives the probability that at time t a
randomly moving particle will be found in path s at lat-
tice site i. The transition matrix %';~ governs the rate at
which the bond joining sites i and j is crossed. The ss
component of %';~ gives the rate at which particles in

path s' at site j move to path s at site i. The exchange
matrix E; gives the rate of transition between transport
paths at site i. We insist that (1, 1, . . . , 1)E;=0 to con-
serve probability. ln particular, for lV =2, E; =K(p;, v;),
where

K(p, v) =
p V

(2)

We assume that (a) all sites are topologically equiv-
alent; (b) W;~ =0 unless sites i and j are nearest neigh-
bors; (c) W;J =Wi;; and (d) the matrices W;& and E; are
independent, identically distributed random variables, but
are mutually independent.

In the present Letter, we develop an exact but implicit
solution of the problem for a d-dimensional system, ob-
tain an exact and explicit solution for d =1, and propose
an effective-medium approximation (EMA) for arbitrary
d and outline some of its predictions. We point out that
even the d= 1 limit of our problem with N ~ 2 is non-
trivial and far more complex than the iV =1 case [9]. For
example, whereas any percolationlike disorder divides a
linear chain into finite segments and prohibits macroscop-
ic transport, in the present problem one can have macro-
scopic transport even if m (m ( lV) paths have been dis-
rupted by percolation disorder. The %=2 limit is partic-
ularly important since it has close connections with a
well-known model [10] that has been used in the petrole-
um industry for modeling transport in reservoir rocks.
Suppose that percolation disorder divides one transport
path into finite segments. Then, the uninterrupted path
represents the backbone of the system in which transport
occurs, while the finite segments act as capacitors which
are charged by exchange with the adjacent path. As
such, the uninterrupted path represents the fractures of a
reservoir that provide effective transport paths, while the
finite segments behave like the porous matrix. The one-
dimensional model of' Coats and Smith (CS) [10], popu-
1ar in the oil industry, has been used based on such an in-

terpretation. But while the CS model was a one-
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dimensional empirical and phenomenological model (no
heterogeneity was allowed), our formulation not only pro-
vides, for the ftrst time, a rigorous I'oundation for the CS
and similar models, it also oAers the novelty of higher-
dimensional geometry, and the possibility of including the
effect of heterogeneities in the model. In what follows the
Laplace transform is indicated by a caret, and k is the
Laplace transform variable. A diagonal matrix with di-
agonal elements (in order) p~, p2, . . . , ptv is denoted by

diag '„I.
Exact formulation for d=l.—In one dimension, the

site index i is an integer and the only nonzero transition
matrices are %';;+[ =W;+[;. Taking a Laplace trans-
form of' Eq. (I) yields

~p, —I, (o) =w. . . [p, ,
—p, ]

+w;, ; 1[P;,—P, ]+E,P, . (3)
As the initial condition we use P;(0) =6; ou, and intro-
duce the propagator matrix M;(t) defined by p;(t) =M;
x (t)u, so that

) M —~;,0I =W;, ;+ i [M;+ (

—M;]

+W;;, [M;, —M, ]+E,M, .

Consider first sites to the right of the origin (i )0). Let
N 0 ) =W, , +|[M (&) —M;+((k)]M;(X) '. Equation
(4) yields the recurrence relation

N, , =(N, +~I —E, )(N, +~I+W. . . —F, )- W„,

Since the random matrices on the right are determined
from the iteration in terms of the transition rate and ex-
change matrices to the right of site i —1, we can show

that, where N, W, and E denote generic independent ran-
dom variables corresponding to N;, W;,;+ i, and E; for
arbitrary lattice sites, N has the same distribution as
(N+XI —E) (N+kI+ W —E) 'W. A similar analysis
may be made for i (0. We can show from Eq. (4) in the
case i =0 that Mo(k) = () I+ N+ + N ——E) ', where
N — and N+ are independent, each having the distribu-
tion of N, and arising respectively from the environment
on the left and the right of' the origin. If ( ) denotes an

average over all realizations of the random medium, as
our probe of the behavior of the system we examine
(Mo(A)) in the limit k 0 (t ~). Since N and
(N+XI —E)(N+XI+W —E) 'W have the same distri-
bution, af'ter some algebra we obtain

((N+) I —E)(N+) I+W —E) —'(N+~I —F)&

=~I —(F&. (6)
Thus, unlike the empirical models [10], we find an exact
solution for a disordered medium with N distinct families
of transport paths. We pursue the implications of these
results in two cases.

Pure transition disorder. —This type of disorder corre-
sponds to, e.g. , randomness in the shapes and sizes of the

Exact solution and effectir e medium ap-proximation
—We attempt to match the random system to an
"equivalent" uniform system. Equation (3) is to be

matched to that of a uniform system, denoted by a super-

script zero, which, however, has the same initial condition
as the random system

~p; —p, (o) =gw'[p, ' —p,']+E'p,'. (9)
J

The effective matrices W =W (X) and E =E (k) are
I'unctions of the Laplace transform variable X [12].
Hence, in the time domain, the random system is being

matched to

~,
P~'«) =J, gw(t —t') [P,'(t') —P, (t')]dt'

j
+&I E(t —t')P,'(t')dt',

where W(t) =l '[W () )j and E(t) =L ' [E (k)I. If

(I o)

transport paths. For example, in rock masses the pores
are characterized by a size distribution and the f'ractures

by a distribution of hydraulic conductivities„both of
which result in random W;~. Consider first the case in

which E; =0, but allow the transition matrices to have
nonzero ofT-diagonal terms, so that changes of path are
forbidden without changes of site, but may occur other-
wise. From Eq. (6), ((N+XI)(N+XI+W) '(N+XI))
=A.I, with the averages over N and W able to be taken
independently. N vanishes with probability 1 as X 0
and so we find that to leading order in k, (NwN) —A, I,
where w=(W ') and the average is now taken only over
the distribution of N. It is now seen that N is O(k't )
and we write N —A,

't n, where (nwn) =I. Thus

(M.(~))—2-'~ —~"(n -') (7)
For /V= I the scalar analog of n is a constant [9] rather
than a genuine random variable, and this should also
occur here. The determination of n thus becomes an

algebraic problem [11]. If any component of (W ') is

infinite the analysis must be modified, a scenario not con-
sidered here.

Pure exchange disorder. —This type of disorder corre-
sponds to an asymmetry in the exchange rates as in, e.g. ,

porous catalysts. To simplify the discussion, we restrict
our attention to iV =2, with the assumptions that (i) W
=diag[u, t'I and (ii) (p, v) =co(p*, v*), with the random

variable co taking the values 1 and 0 with probabilities p
and 1

—p, respectively, corresponding to exchange taking
place at a random fraction p of the lattice sites.

Preliminary analysis of the uniform case suggests that
in the limit k 0, N ——gK(p*, v*). This is consistent

provided the random variable g has the same distribution
as (tu+g)/[I +(p*/u+ v*/i )(co+@)], with ru and g in-

dependent. Thus, we find that p(g '(g+ I ) ') =(p*/
u+ v*/1 ) and so in the limit of small p, we have the exact
asymptotic result that

(g ') —p '(p*/u+ v*/(). (II)
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g(A) =
J {z[l —A(k)]I+A} dk

z

=Q diag {g(a„)j Q

(i3)

with A(k) =z g, exp(ik r). Equation (11) has the
formal solution

P, —P; =ggG;, (A)~,, [P, —P, ] —gG;, (A)I;P, ,j l. J

(i 5)
which is exact but only implicit.

We defer for the moment the discussion of the con-
struction of the EMA to assemble some properties of the
uniform system described by Eq. (9) which will be need-
ed later. The Laplace transform (R (k)) of the column
vector mean-square displacement &R (r)) =+~I Pl(t) f'or
the initial condition P~(0) =6ipu is given by

(R'(k)) =z[) I —E'(X)] 'W (X)[XI—E (X)] 'u.
(i6)

The large tbehavior of' (R-(r)) can be deduced from the
small-X behavior of (R (k)), although, unlike the JV =1
case, the latter has to be calculated carefully since E (0)
is singular. One may show that Mp(k) =g(A)A() I
—E ) ' =g(A)(W ) '. As before, we confine our at-
tention to two cases.

Pure transition disorder. —Here we assume that the
exchange matrices are the same for each site (so I";=—0)
and we write E; =—E . We construct the single-bond
EMA by allowing only one bond to have a transition ma-
trix diff'erent from W [14]. if this bond joins sites 0 and
1, Eq. (15) leads to Pp —P~ = {I+[I —Ag(A)]dpi}

transport is confined to a fractal subset of the system
(e.g. , a percolation cluster at length scales smaller than
the correlation length), W(t) and E(r ) can be slowly de-
caying [12,13]. For example, fracture networks of rocks
often have a fractal structure [ll, while the pore networks
do not. However, if the time scales for transport in dis-
tinct paths are very different (for example, transport in

the fractures is much faster than that in the pores), then
the macroscopic behavior of the system can be very com-
plex (see below).

Equations (3) and (9) are combined to yield

(;I+A)(P; —P,') —g [P, —P,']
J

= —gh; [P; —P ]+I;P, , (11)

where A=(W ) '(kI —E ), A;~ =(W ) 'W;~ —I, and
1;=(W ) '[E; —E ], with I the identity matrix and z
the coordination number. We introduce a matrix Green
function G;~(A) by

(=I+A)G;i, (A) —QG, i, (A) = —8;I, I. (i 2)
J

We use a matrix Q to diagonalize A, so that Q 'AQ
=diag{a„j. Then, Gpp(A) = —g(A), where

&& [Pp —P~ ]. The sin. gle b-ond EM A is constructed by re-

quiring that (Pp(k) —Pi () ) ) =Pp (X) —P
~
(k). Therefore,

we obtain

({I+(2/z) (I —Ag(A)]A} ') =I, (i 7)

where I =I o. We now examine some representative pre-
dictions of EMAs in d =1, and compare them with the
exact results. The EMA predictions for d & l will be
given elsewhere [14].

1Yo exchange matrices. —If E; =0, but W;j can have
ofT-diagonal terms, then A =k(W ) ' 0 as X 0 and
indeed Ag(A) 0. Thus, Eq. (17), in the limit X 0,
reduces to ({W (0) 'Wj ') =I and we find that W (0)
=(W ') ', which should be compared with the naive
perturbation prediction that W (k) =(W) for all k.

Since (Mp(k)) =g(k(W ) ')(W ) ', we introduce a
matrix V to diagonalize (W ) ', so that (W ) ' =V
xdiag{cp„'j V ', and

(Mp(k)) =V diag{rp„g(A rp„) j V

Since g(a) —1/2a ' as a 0, we predict that

(Mp(k)) =,i Vdiag{rp„}V
l

2X'"

(i9)

(20)

We shall see below that this result is exact.
Diagonal exchange matrices for /V =2.—Here we take

W =diag{u, i j, W =diag{u, i j, E =K(p, v ), and we
write ir =p/u+ v/i and ir =p /u + v /v . As ).—0, the
eigenvalues a] and ap of A have the limits a~ 0 and
a2- x . Although g(A) =Qdiag{g(a„)}Q ', it is not
convenient to calculate g(A) this way, since g(ai) di-
verges as k 0 we obtain simple expressions for
Ag(A) =g(A)A.

Consider first pure exchange dIsorder, so that %' =%'
and we may take u = u and i = t as known constants.
Since

F=(WP) '(E —E') =A(KI —E') '(E —E'),
Eq. (18) is equivalent to asserting that

({I—diag{a„g(a„)}Q '(KI —E ) '(E —E )Qj ') =I.

where b =dpi [15].
In the weak disorder limit ("small" A), expansion of

the inverse matrix in Eq. (17) as a power series shows
that for self-consistency it suffices that ([I —Ag(A)]LE)
=0, so that W =(W). We shall see that this approxi-
mation, though valid in the limit of weak disorder, is poor
in general.

Exchange disorder. —We now assume that the transi-
tion matrices are the same for each site (6;& =—0) and we

write %';j=W . In the single-site EMA only one site
(site 0, say) has an exchange matrix which differs from
E, and thus P;(k) —P, (k) = —G;p(A)rpPp(k). For
i =0 we deduce that Pp(k) = {I g(A)I pj Pp(k), yield-

ing

({t—g(A)I-j ')=I,
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Although (XI —E ) ' diverges as ) 0,

() I —E ) '(E —Eo) = [po+ vo+k] 'K(p —p, v —v )

has a finite small-k limit. Then, it can be shown that as
0

([I +g(«') («.—x')] ') = I, (21)

po =(p [1+g(xo) («- —xo)] '),
vo=(v[1+g(x')(x —x')] ') .

(22)

(23)

p [I —xog(xo) ]
2x'g(x')[I +g(x')(x* —x')] ' (24)

and t h us as a 0 we predict that a- —4p . Consequen t-
ly, as p —0, we have g —2p/x*, with tc* =p */p
+ i */i . Thus, we find that the EMA prediction g and
the random variable g of the exact analysis satisfy

limy (I/g) =2.
p +(}

(2S)

The EMA thus yields the exact scaling in the limit p 0.
The case of transition disorder only with JV =2 (or any

IV ~ 2) is more subtle. Writing p =p =const, we find
that Eq. (17) reduces in the k =0 limit to three indepen-
dent scalar equations for the t~o unknown functions
u (0) and i (0), which in general admit no solution.
This suggests that for transition disorder, the uniform
system which represents the global transport properties of
the disordered system must either possess off-diagonal
terms in the matrix W (k), or have an exchange matrix
E ().) which differs from the exchange matrix for each
realization of the system. In other words, matching a
disordered system with several distinct families of trans-
port paths to a uniform system induces not only memory,
but also additional coup/ings absent from the original
system. This explains, for the ftrst time, why simply cou-
pled diffusion equations are found to be poor models for
transport in fractured rocks [I].

In summary, we proposed a model for transport in

To illustrate the predictions of the EMA, consider the
case of binary disorder, where (p, v) takes the values
(p*, v*) and (0,0) with probabilities p and I

—p, respec-
tively, and for brevity write x* =p*/u + v*/v . Equa-
tion (21) becomes (I —p) =(1 —x /x*)[l —g(x )x ],
yielding a quadratic equation for ~ . In the 'dilute lim-
it" p- 0, p and v (and so x ) should vanish. Since for
d= I, g(a) —(4a) ', we predict that x —4p . Thus,
even in the limit of arbitrarily small p, the naive pertur-
bation prediction that x =(«) =px* is not recovered.
Moreover, EMA yields an exact result here. To see this,
note that we have from Eqs. (22) and (23) that p /p*
= v /v* =p/[I +g(x )(x*—x )], and the EMA predicts
that limx .oN = —g K(p*, v*), where K is defined by
Eq. (2) and

heterogeneous media with multiple families of transport
paths. We derived an exact (but implicit) solution of the
model for arbitrary dimensionality and number of trans-
port paths which demonstrates, for the first time, why
simply coupled transport equations that have been used
so far cannot describe transport in such media. We de-
rived an exact and explicit solution for d = l, thus provid-
ing, for the first time, a rigorous foundation for a popular
empirical model [10] that has been used in the past for
describing transport in rock masses. We outlined the
construction of a class of EMAs that should be useful for
describing transport in disordered media that are not too
close to their percolation threshold. Finally, our model
allows one to investigate the effect of multiple time scales
for distinct transport paths. For example, transport along
the fractures of rocks is much faster than that in the
pores, and therefore even if the fracture network is frac-
tal, unlike the N =1 case, the macroscopic behavior of
transport in the rock may not be subdiffusive.
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