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Coherent Nonlinear Coupling between a Long-Wavelength Mode and Small-Scale
Turbulence in the TEXT Tokamak
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Bispectral analysis of Langmuir probe data indicates that coherent nonlinear coupling, in addition to
the noncoherent turbulent interactions, exists in the edge plasma of the tokamak TEXT. Not all the
modes involved reside within the spectral region of the usual broadband turbulence. At a major resonant
surface the small-scale turbulent activity interacts coherently with a localized long-wavelength mode; a
signature of regular or coherent structure. By the observed coupling to the transport related turbulence,
the long-wavelength mode can influence plasma confinement indirectly. These observations signify the
influence of low-order resonant surfaces on the edge turbulence in tokamaks.

PACS numbers: 52.35.Mw, 52.35.Ra, 52.55.Fa

Turbulence is thought to be important in determining
the transport of energy and particles in toroidally con-
fined plasmas of fusion interest [1]. In addition to being
accessible to probing, the edge region of these plasmas
has been studied extensively because of its overall rela-
tionship to confinement. Experiments to date show that
interactions and couplings between spontaneously excited
fluctuations can lead to turbulence-induced particles and
energy fluxes that dominate the transport in the edge of
tokamaks ([2] and references therein) as well as in the
edge of other magnetically confined toroidal plasmas
(e.g. , [3]). Thus, it is important to understand and to
control the turbulence-induced transport. The edge tur-
bulence in tokamaks has been associated with a number
of driving mechanisms, although it has been widely as-
sumed that the turbulence is the nonlinear stage of linear-
ly unstable modes of drift type (e.g. , [4]). Theoretical
studies of turbulence often predict that inverse cascade
leads to large-scale vortexlike structures coexisting with
the small-scale turbulence [5-9]. Nonlinear interactions
between the long-wavelength and the short-wavelength
modes can significantly aAect the dynamics of the system
such as self-organization and the formation of regular
structure.

In the Texas Experimental Tokamak (TEXT) the edge
turbulence (at r a) is typically distributed in a broad
frequency band 50-150 kHz [10], although isolated spec-
tral peaks often exist in the power spectra obtained from
fluctuation measurements near major resonant surfaces.
For instance, near the magnetic flux surface having a
safety factor q =rB&/RB&=3, a feature with properties
diAerent from those of the broadband turbulence has
been observed at a frequency of 20 kHz [11]. Examples
of the power spectra obtained from Langmuir probe mea-
surements of IIoating potential IIuctuations (p) at the

q = 3 (solid line) and at q = 3. 1 (dotted line) IIux surfaces
are reproduced here in Fig. 1(a). There is a low-

frequency "quasicoherent" mode, so named because of its
relatively narrow spectral peak, confined to the q =3 flux
surface. The (half) radial mode width was estimated to

be less than 3 mm. Using a two-point correlation tech-
nique [12], it was determined that the 20 kHz quasico-
herent mode has relatively long wavelength (kit= 50 m
or poloidal mode number m =12) compared to those of
the broadband turbulence (ke =300 m ' or m =75 at the
broadband spectral peak of 100 kHz). It propagates in
the same (electron diamagnetic drift) direction as the
broadband modes and has relatively faster phase velocity.
In terms of the collisionality parameter k~ft th/cuv, [13],
the low-frequency mode is collisional and the broadband
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FIG. l. (a) Power spectra of the Langmuir probe floating
potential fluctuations (p) and (b) spectra of the electrostatic
fluctuation-driven particle flux, obtained from a cross correla-
tion between the density fluctuations n and the poloidal electric
field fluctuations Ee, at r/a =0.95 (solid line) and r/a =0.97
(dotted line). At r/a =0.95, corresponding to the q =3 flux sur-
face, a peak at at/2tt=20 kHz coexists with the broadband ac-
tivities centered at co/2tt = l00 kHz. In spite of its large ampli-
tude, the low-frequency activity does not contribute much to the
particle flux.
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turbulence is semicollisional. These results are consistent
with predictions based on kinetic theory of tearing modes
[14,15] or the drift-resistive MHD theory for drift-
tearing modes [16] and drift-ripping modes [17]. In con-
trast to the small-scale broadband activity this mode does
not contribute directly to the electrostatic Auctuation-
driven particle fiux [see Fig. 1(b)l though it may contrib-
ute indirectly through nonlinear interaction with the
broadband turbulence. This nonlinear coupling path is
the subject of the present work.

In this Letter, we describe new phenomena related to
these localized quasicoherent modes. Using a bispectral
analysis technique [18], we identified coherent nonlinear
coupling between the localized long-wavelength mode and
the short-wavelength modes in a frequency band in the
lower part of the usual broadband spectrum. Such cou-
pling supports the hypothesis that the quasicoherent
mode can inAuence the small-scale turbulence and hence
indirectly the associated transport. Furthermore, the
analysis reveals that Py (ru~, r02) =1 for interactions in-

volving the localized low-frequency mode, where y is the
bicoherence corresponding to a triplet co~, m2, and co

=co]+co2 and the sum is over all co] and co2 satisfying
this resonance condition. This result indicates that the
nonlinear interactions comprising the quasicoherent mode
are coherent in contrast to the conventional picture of
noncoherent strong turbulent interactions among the
shorter-wavelength broadband modes. By coherent we
mean that spectral broadening or phase randomization in

the nonlinear process is small. In the absence of tur-
bulent broadening, the interacting modes can stay togeth-
er to form a regular or coherent structure.

Figure 2 is a three-dimensional plot of the squared
bicoherence, y (co~, ro2), computed from the same fioating
potential fluctuation data which has the power spectrum
shown as the solid line in Fig. 1(a). The squared auto-
bicoherence from a single spatial-point measurement
which is defined as

0. 1

500 0 ~02

2z
FIG. 2. The squared bicoherence y2(ro~, roy) showing three-

wave interaction of modes with frequencies co[, m2, and or =co~

+r02 Th.ere is a prominent peak at F02/2m=20 kHz and 20
k Hz ~ coi/2m ~ 80 kHz.

(ii) ro2/2rr =20 kHz, and (iii) co~/2rr =20 kHz inside the
triangular region. The peak value of y =0.1 is large
compared to the statistical uncertainty of 0.004 (= I/M
where M =240 is the number of realizations). Values of
y at other frequencies (e.g. , those falling within the usu-

al broadband activity), though less than the peak value,
are still larger than the statistical uncertainties. This
means that nonlinear interactions are also present among
the broadband activity; a result consistent with previous
studies on the coupling coeScients and po~er transfer
functions [19]. To focus the discussion on wave-wave

coupling involving the quasicoherent mode, we plot y for
these interactions in Fig. 3. Here the x axis corresponds
to the frequency (co~/2rr) of one component of the triplet
which satisfies the resonant condition co~+m2=co3 with

ru3/2rr fixed at 20 kHz. This figure shows that strong
nonlinear coupling occurs between the quasicoherent
mode at cu/2rr =20 kHz and frequency pairs ro~ and

~(9 (co/)s (rdz)9 *(ru)+ru2)) ~'
y

(~v (Cu})v (Nz) ~'&((s (ro]+Cuz))'&

0, 1

0)3/2K: 0)I/2K + c02/2

= 20 kHz

with ( ) denoting the ensemble average and P* the
complex conjugate of p, describes the coupling among a
triplet of modes at frequencies coi, co2, and co=co1+co2.
When modes of diAerent frequencies vary independently
as in random noise the bicoherence has a value of zero.
Because of the symmetry property of bicoherence, it is

customary to plot the autobicoherence within the triangle
0 coz roNQ/2 and coz ~ cu~ ~ coNQ

—roz [18] where

C0NQ is the Nyquist frequency. The prominent peak (at
cuz/2rr=20 kHz and 20 kHz ~ ro~/2rr ~ 80 kHz) in Fig.
2 indicates a significant level of nonlinear interactions
concentrated at these frequencies. In this compact repre-
sentation, the interactions involving the quasicoherent
mode at 20 kHz are represented by y (ru~, F02) lying on
three separate straight lines: (i) (ro~+ cuq)/2rr =20 kHz,
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FIG. 3. The squared bicoherence y2(ro~, r02) for interactions
satisfying the resonant condition ro3=co~+ca2 with F03/2rr fixed
at 20 kHz. Strong nonlinear interactions occur between the
quasicoherent mode at 20 kHz and modes in the frequency
band of 40-100 kHz. The straight line denotes the statistical
uncertainty of 0.004 in y .
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though for simplicity, we proceed by ignoring the radial
mode structure. In this case, we may identify k = (ka, k&).
For stationary turbulence, Eq. (2) can be Fourier
transformed in time to yield

0.5 ~ k, k'
Vk(ru) = g '.

V k(ro')Vk k(ro —ro').
gp', k' Lk+ let)
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I I
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In this form, the wave-coupling equation relates each
pk(co) to the quadratic terms involving modes satisfying
the resonant conditions in k and m. Let us now examine
the squared bicoherence defined in terms of the spectral
components as

FIG. 4. The sum of squared bicoherence of the interactions
involving a mode at frequency co/2|r. At the quasicoherent
mode frequency (20 kHz&, the sum is close to unity. The unity
sum is an indication of coherent nonlinear interaction. The
straight line represents the statistical uncertainty of 0.2 in Py .

col+co2 in the band between 40 and 100 kHz. It is worth
emphasizing that the lower frequency (and lower ks)
components of the broadband activity dominate these
nonlinear interactions.

An interesting property of the interactions connected
with the quasicoherent mode is that the total squared
bicoherence gy (col, ro2) =1. This result is shown in

Fig. 4 together with the total squared bicoherence at oth-
er mode frequencies. Each value of the total squared
bicoherence is a sum of y for all co~ and m2 satisfying the
resonant condition co=mi+m2 within the reduced tri-
angular spectral region. Only at the quasicoherent mode
frequency (20 kHz) is the total squared bicoherence close
to unity. Within the framework of quadratic coupling
models, the unity total bicoherence indicates coherent
wave coupling. The coherent wave coupling itself is indi-
cative of regular (or coherent) structure. The less than
unity total squared bicoherence at other mode frequencies
(e.g. , those of the broadband activity) is consistent with
noncoherent turbulent interactions among the short-
wavelength modes.

To prove the above conclusions, we examine the behav-
ior of the bicoherence of a system described by a general
nonlinear wave-coupling equation (an example is the
Hasegawa-Mima equation [20]),

Kk(r )
+Lkv k(r) g+kk'v k'(t)v k-k (r),

Br k'

where Lk denotes the linear and Ak k the nonlinear cou-
pling terms. It is possible to include radial eigenmode
structure using the analysis procedure of Ref. [21], al-

I &v k (ru) v k (ro') v k —k (cu —ru') & I

'
yk k' CO, M

&
I v k (ru') v k —k (co —ru')

I
z&& Iv k(ro) I

&

(4)

With the quasinormal approximation (so that the ensem-
ble average of cross products involving four distinct
Fourier modes vanishes), it can be shown by substituting
pk from Eq. (3) into Eq. (4) that

Z yk, k (~,~') = I
AP, k

(6)

within the reduced triangular spectral region. (Note that
the total squared bicoherence over the full spectral region
is 2.) The above result says that the full spectral squared
bicoherence yk k (ro, ro') is a measure of the relative con-
tribution from each of the interacting pairs pk(ro') and
pk-k(ro —ru'). When there are only a few modes in-

volved in the nonlinear interaction, the typical yk k would

be high. As the number of modes involved in the cou-
pling increases, the average ykk reduces owing to the
condition imposed by Eq. (6).

In the experiment, the time behavior of P(r, x) is mea-
sured only at a few specific positions. With such limited
spatial information, it is not possible to resolve the mea-
surement into individual k modes. Nevertheless, we can
compute an autobicoherence from a single point measure-
ment. For homogeneous turbulence, the ensemble aver-

age quantities are independent of x (i.e., poloidal and
toroidal positions) and we can relate the autobicoherence,
as defined in Eq. (1), in terms of the spectral components
to yield

2I&k, k/(I k+i~) I'&lv k(~')v k-k (~ —~') I'&

X,.k l&kkl«k+i~)l'&lv k(~ )v k-k(~ —~')I'&

(5)
By summing the squared bicoherence [Eq. (5)] over ro'

and k', we find an important relationship that

&z., +., =.xk, kl&kkl«k+ i~) I'&lv k (~1)v k-k (~2) I'&

Applying the Schwartz inequality to the numerator in Eq. (7), we find quite generally that

(7)
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2 y'(~i, ~z) ~ 1

tt31+ OP2
—N

It can be seen from an inspection of Eq. (7) that the total
squared autobicoherence is reduced by turbulence
broadening. In the absence of broadening, i.e., when
modes lie on a well-defined dispersion such that pk(co)
=p(to)8(k —k(to)), the total squared autobiocoherence
is exactly unity. (We note that to =coL+t5toNL =coi+co2
is the nonlinear mode frequency and h, mNL the nonlinear
frequency shift; i.e., the well-defined dispersion needs not
be the linear dispersion curve as given by Lk+ito =0.) In
fact, one can show that gy (ttti, tttz) = I —6 where
6—vtt/to with vtt the turbulence frequency broadenillg.

In the edge plasma of tokamak TEXT, quasicoherent
peaks are often observed in the power spectra of fluctua-
tion data measured near the major resonant magnetic
Aux surfaces. These quasicoherent peaks have low fre-
quency and long wavelength (low m) relative to the
small-scale broadband activity. In spite of the diA'erences

in their linear properties, the quasicoherent mode is non-

linearly coupled to the short-wavelength modes, especially
those with frequencies below the broadband peak. This
means that the relatively low-m modes should be con-
sidered as components of the edge turbulence. When
they are included, the localization and q-dependence
properties of the turbulence become obvious. These prop-
erties imply that radial eigenmode structure is relevant in

modeling the edge turbulence. The q-dependence proper-
ty is also discernible in the behavior of the overall wave
number spectral width in some experiments [3,22]. The
bispectral analysis of edge Auctuation data further indi-
cates that the nonlinear interactions involving the long-
wavelength modes are coherent; a signature of regular or
coherent structure. The coherent interactions also imply
that the nonlinear process may generate a frequency shift
(from the linear mode frequency) but not a substantial
frequency broadening. These results suggest that the
nonlinear dispersion might be a fairly well defined curve
in the plasma frame and that the spectrum observed in

experiment (i.e., in the laboratory frame) might be
broadened by finite radial resolution in measurement and
variations in the plasma rotation.

In summary, we have established that the long-wave-
length modes localized to major resonant surfaces are
indeed part of the turbulence system and that coherent
nonlinear coupling (indicative of regular structure) exists
in the vicinity of these low-order resonant surfaces.
These studies extend our general knowledge of plasma
turbulence. We have identified a path (i.e., nonlinear
coupling to the transport-related turbulence) through
which the long-wavelength modes can inAuence transport.
If the long-wavelength modes are unstable, they could
even provide the sustenance needed to maintain the tur-
bulent system. Further work is needed to determine the
direction of energy How and the exact role of the long-
wavelength modes in confinement.
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