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We derive the entire singly excited electronic level spectrum of a dipolar molecule (CaF) from atomic
properties alone (the quantum defects of Ca+). In the approach presented here the motion of the lone
electron is treated as a double scattering process involving the closed-shell Ca++ and F centers with
F treated as a point charge. The energies of all known electronic states of CaF are well reproduced by
the theory. Refinements of the model such as inclusion of the finite volume of F or of polarization
effects are deferred as are extensions of the model to account for spin-orbit and other fine structure
effects.

PACS numbers: 31.20.—d, 31.50.+w, 33.10.Cs, 34.80.Kw

Two years ago Murphy et al. [1] used optical-optical
double resonance fluorescence spectroscopy to study ex-
cited states of the calcium fluoride molecule. They un-
covered an extended system of previously unknown states,
showing that CaF belongs to a novel class of Rydberg
molecules (not encompassed by Herzberg's earlier defini-
tion [2]). This is one in which the outer electron is bound
to a core with total electric charge +1, but where the
core itself is subdivided into two distinct entities, a
closed-shell calcium ion carrying two positive charges and
a closed-shell fluorine atom carrying a single negative
charge.

A few years prior to this, Rice, Martin, and Field [31
had already shown that the electronic structure of the
lowest states then known of CaF, as well as of several re-
lated alkaline earth halides, could be calculated success-
fully on the simple assumption that these states result
from the interaction between a free Ca+ ion, in various
of its lowest states, perturbed and distorted by the field of
a negative point charge placed at the position of the
fluorine atom. While this "ligand field model" accounts
nicely for the lowest states of several alkaline earth
halides it cannot be readily extended to the newly ob-
served higher states. This is because with increasing en-

ergy the electron cloud of the lone electron on Ca++
gradually grows around the F ligand unti1 both ions are
completely surrounded by it, a situation which is not easi-
ly handled by the perturbation approach of Ref. [3].

We have here an interesting prototype system. If the
F indeed acts as a negative point charge it should then
be possible to derive the full system of electronic states of
CaF from the properties of the Ca+ ion alone. Specifi-
cally, the three nonzero quantum defects of Ca+, p,
=0.802, p&=0.432, pal=0. 615, should tell us all that is
required to predict the molecular electronic structure of
CaF, including the evolution between the limiting situa-
tions of an "electron on Ca++" and an "electron on
Ca++F ." This is therefore a novel application of the
concept of "atoms in molecules, " and it is one of the sim-
plest ways to turn an atom into a strongly dipolar mole-
cule.

The theoretical development presented below treats the
electron core interaction in terms of scattering theory; it
is an application of the so-called "generalized quantum
defect theory" [41, and it is closely related to the molecu-
lar multiple scattering method (MSM) put forward a
number of years ago by Dill and Dehmer [5]. We make
use of the fact that the Schrodinger equation is locally
separable in two regions of space (cf. Fig. 1 for refer-
ence), namely, outside an appropriately chosen ellipsoid

( =gp surrounding the two ions (region I), as well as near
the surface of the Ca++ ion (region III). The main task
of the calculation then consists in bridging the gap be-
tween those two regions; it is here in the reaction zone II,
that the lone electron evolves from an atomic into a
molecular electron or vice versa. %'e discuss regions I,
III, and II in turn.

In region I the lone electron experiences only the elec-
trostatic field Z~/r~ —Z2/r2, w—here r~ and r2 are the
distances from the calcium (Z~ =+2) and the Auorine
(Z2 = —I ) ions, respectively. The quantum description
of its motion is therefore separable in elliptical coordi-
nates (=(ri+rz)/R (I ~ (~ ~) and tI =(r )

—r2)/R
( —

1 ~ tI ~ + 1). Any particular solution titti of the

IIa -- r,=r,

FIG. 1. Various zones relevant to the description of an elec-
tron interacting with an atomic core and a point charge.
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molecular electronic Schrodinger equation can therefore
be written as a superposition of products of elliptical radi-
al channel functions f((e, g) and g((e, g) (regular and ir-

regular at the origin, respectively) with elliptical angular
factors Y(-(„(t(,p),

1

yp(e, g, r(, (t() =gY;,(e, (l, y) (2 I
12

x [f((~,g)r;, (~) g;(—~, g)J;,(~)] . (1)

Here e is the electron energy which may be positive (elec-
tronic continuum) or negative (bound state spectrum).
is the electron orbital angular momentum component
with respect to the axis joining atoms 1 and 2. It is a

good quantum number as long as the nuclei are kept
fixed. The tildes on f, g, and Y (and on other quantities
later in the text) serve to distinguish these functions from

their spherical analogs. The diA'erential equations which

yield the elliptical functions f(, g(, and Y(~ depend on Z(,
Z2, R, and e; they are well known [6] and will not be re-

peated here. The calculation of the energy-normalized
channel basis functions f( and g( for arbitrary positive e is

straightforward and may be performed by any standard
numerical propagation scheme. For negative energy it is

the main task of generalized quantum defect theory [4,7].
We wish to determine the coeScients I&& and J&& in Eq.

(1) in terms of an adequate set of independent eigensolu-
tions yp. The reactance matrix K&&, or the equivalent
quantum defect matrix p&&-, is then given by

K(-( (c,R ) = t an tr p ( ((c,R ) =—gJ(((lp-(- (2)
P

The matrices I, J, K, and p depend on what happens to
the lone electron inside the reaction zone II. If both ions
were simple point charges, then J, and consequently K
and p, would be zero. Once the quantum defect matrix p
is known, the electronic bound state spectrum emerges
from the requirement that the wave function vanish for

In the framework of generalized quantum defect

theory this leads to the condition that

+[tan(Pr((-(e, R)+tanP((e, R)b((]Z( =0
ft

(3)

for each elliptical partial wave /. The parameter P( in Eq.
(3) is the so-called accumulated phase at the given ener-

gy t. ~ 0, which, on division by z, simp1y gives the num-
ber of half oscillations carried out by the regular function
f((e, g) of arbitrary t. before it diverges as g ~. P(/(r is

just the generalization of the familiar eA'ective principal
quantum number for a Coulomb field, P(

'" /(r= v '"'
—I=Z( —2e) ( —I, with the diff'erence that in the
general case the relationship between the accumulated
phase and the energy is no longer given by the Rydberg
equation but must be evaluated numerically. The reader
who is not familiar with quantum defect theory may easi-
ly convince himself that for a single channel Eq. (3)
reduces to the conditionP +P/(r =n (n integer). In other
words, the contributions to the total accumulated phase
of the bound state radial wave function arising inside
((rP ) and outside (P) the reaction zone must add up to a
multiple of z.

We next consider the wave function near each of the
scattering centers Ca++ and F, respectively, and, in the
spirit of the MSM, we consider each center separately.
The e -F interaction is repulsive and hence the corre-
sponding scattering phase shifts must be small. We actu-
ally set them to zero, thus replacing the fluorine ion by a
negative point charge as is done in ligand field theory. By
contrast, the scattering oA the strongly attractive calcium
ion depends sensitively on the internal structure of the
latter. Near the doubly charged core the potential term
—Z(/r~ dominates so that the electronic Schrodinger
equation becomes locally separable in terms of the spher-
ical coordinates r(, B(,(t(centered on the nucleus 1. There-
fore we obtain the constraint on each eigensolution y~ in

region II that it must reduce to a superposition of spheri-
cal atomic partial waves on the boundary of the atomic
region III, r t =r~,

1
y((~, r(, B(,(t() = Y(g(B(,p) [f((e,r()cos(rp( —g((e, r()sin(rp(],

ri
(4)

(5)

The coefficients p( in Eqs. (4) and (5) are simply the
known atomic quantum defects of the Ca+ ion. Equation
(5) expresses the fact that the knowledge of these quan-
tum defects is tantamount to the knowledge of a corre-
sponding set of radial boundary conditions b& on a suit-

where the V~z are now ordinary spherical harmonics and

f( and g( are energy-normalized regular and irregu-
lar Coulomb functions, respectively. Each component
r~y((r() is characterized by a constant logarithmic de-
rivative on the ion surface r ~ =r~,

a(r, y()/er )

b( r) (r ) y()
f((r 1 )cos(rp( g/ (r()sin(rp(—
f((r()cos(rp( g((r )1si n(rp—(

ably chosen spherical surface near the Ca++ nucleus.
We now turn to the problem of constructing a set of

eigensolutions yp valid throughout the reaction zone II,
which have the correct logarithmic derivatives on the
III/II boundary as required by Eq. (5) and which may be
matched to the asymptotic form Eq. (1) at the II/I
boundary. We introduce at this point the auxiliary region
IIa which is the region between the two spherical surfaces
r~ =r~ and rl =rg centered on the metal nucleus 1 and
enclosing the ellipsoid g =(0 (see Fig. 1), and the smaller
atomic core surface rt =r~. The advantage of using re-
gion IIa is that it may be spanned by a set of spherical
free-particle eigenfunctions defined for positive as well as
negative energy that have well defined boundary condi-
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tions on the edge of region III. These are

1
((t (q(r(, O(, &) =Y(~(O(,&) [c (sin(k (r()+d (cos(k (r()] (e (= —,

' k (~0),
I']

(6a)

(trml(. (r(, O(, p) = Y(g(O(, P) [c (e" "'+d (e
" '"'] (e (

= —
—,
'

(c ( ~ 0) .
ri

(6b)

The coefficients c and d in Eqs. (6) are determined for each function by the appropriate atomic boundary condition
b((r( =r~) [Eq. (5)] on the one hand, and by an additional condition b((r( =r(() at the outer boundary of region IIa on
the other hand. This second condition is regarded as a free parameter at this stage and is chosen to be the same for all
partial components l, b((r( =r(() =b(r((—). The set of functions (tt ((,(b(() defined by Eq. (6) is orthonormal and discrete
as indicated by the radial quantum number m.

The Hamiltonian in region IIa for r~ ~ r] ~ r~, is simply the electrostatic interaction between the lone electron and
the two charges Z] and Z2. The matrix representation of the potential energy for each value of X is given by the in-
teg rais

Hml, m'('(b (rt() ) =
J J (irma (» (, O(, (i()

i (/ + I)+
r] 2r~

ittm ((,(r (, O(, (t()r ( sinO(dr (dO~dp .
(r~ —2r(RcosO(+R ]'t

(7)

t
All matrix elements depend parametrically on the bound-
ary condition b(r8) and are of course diagonal in the
quantum number k.

Diagonalization of the Hamiltonian matrix Eq. (7)
yields a set of eigenenergies ep (b(r(()) and eigenfunc-
tions (tr(( (b(r(()) valid everywhere in region Ila and thus
also in the enclosed region II. Since we wish to match
the eigenfunctions tile to the asymptotic form of Eq. (1)
at a preselected energy e, the parameter b(rt() must be
varied until one of the eigenvalues t.p coincides with t. .
This is the iterative eigenchannel R-matrix procedure of
Fano and Lee [8], with the diA'erence that here boundary
conditions are imposed on an inner as well as on an outer
boundary. There will be as many distinct eigenvalues
b(((r(() as there are partial waves / in the basis set Eq. (6).
Their inverses are just the eigenvalues of the conventional
R matrix [9]. Rather than varying b(r(() explicitly we
have used the equivalent noniterative variant [10] of the
eigenchannel R-matrix method which yields the eigenval-
ues b~ directly as the solutions of a generalized eigenvalue
problem.

Once the set of eigenfunctions y~ spanning region IIa
has been evaluated for the desired energy e, the values

(t(t((gp) and derivatives y('((gp) with respect to g on the
surface of the reaction zone II are also known. The ma-
trices I and J are then calculated through matching by
means of Eq. (1) and its derivative. The result is

I(((
= (r(g('u((( —

g( u('t(), J((( = tr(f('u((( f(u('((), —

where primes refer to differentiation with respect to g and
where we have made use of the fact that the Wronskian
W(f(, g() equals I/(r. The coefficients u result from ex-
panding yp on the reaction surface in terms of the ortho-
normal "surface harmonics" Y&~(rt):

u(~(&) =„g YP (q, y) [(&' —I ) 't'ittp'"'(&, rt, (/()]drtd(i(.

The right-hand side of Eq. (8) is evaluated for g =gp, the

resulting matrices I and J are independent of gp. Use of
Eq. (2) then completes the calculation of the elliptical
quantum defect matrix pg.

I n a typical calculation we have taken the values
r~ =0.8 a.u. , I'8 =6.5 a.u. , gp=2. 7, and e= —0.01 a.u.
corresponding to v '"' —7. R =3.54 a.u. is the equilib-
rium internuclear distance of CaF+. The Ca+ quantum
defects for I =0-2 used are those quoted at the beginning
of this Letter. For l ~ 3 we set pl=0. We have found
that ten radial components m and five angular com-
ponents l in the basis Eq. (6) yielded converged results.
The Rydberg energies e„z(R) are then calculated from
the p matrices by means of the generalized Rydberg
equation (3).

The results are conveniently displayed with reference to
the effective principal quantum number

v '"' = n=12Z] +Z2
vnx

( ) (t2 (9)

referring to the Coulomb system with total charge
Z ] +Zp = + 1. The eAective quantum numbers thus eval-
uated combine contributions due to the core dipole field
and higher multipole components as well as penetration
into the Ca++ core. Figures 2(a) and 2(b) are plots of
v„q'" (modulo 1) vs v(q "'~ and compare the experimen-
tal values from various sources [1,11,12] (dots) with the
theoretical results (lines). It can be seen that the agree-
ment is satisfying. An important point to note is that the
theory predicts correctly the lowest state of each of the
six known Rydberg series; the successful calculation of
the ground state at v '"' =1.541 (observed 1.528) is

particularly gratifying and shows that even the ground
state of CaF can be viewed as a Rydberg state in the gen-
eralized sense employed here. In terms of energy, the
lowest states are reproduced to within 0.1-0.2 eV, with a
smaller mean error than in all previous calculations
[3,13,14]. The agreement is about 10 times better for the
higher states.
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still lacking.
Finally, the present work should lead to a considerable

extension of the multiple scattering method for calculat-
ing e -molecule scattering processes [5]. This will in-
volve representing the second center (here F ) by an
atomic core region with associated quantum defects as
has been done here for center l. Our diagonalization
procedure then removes a major drawback of the MSM,
namely, the need to have a constant potential between the
centers. Charged constituent atoms can thus be treated
as well as neutral ones, and polarization terms are incor-
porated readily.

We thank Dr. R. W. Field (Cambridge, U.S.A. ), Dr.
H. Gao and Dr. J. M. Lecomte (Orsay), Dr. S. Ross
(Fredericton), and Dr. J. Verges (Orsay) for comments
and discussions. We acknowledge partial support for one
of us by the National Science Foundation (Grants No.
PHY87-097597 and No. CHE91-20339) as well as a
NATO International Travel Grant (693/84).

0.2—

0.1—

0.0—
0

I
'

I
'

I
'

I
'

I

1 2 3 4 5
V

I
'

I
'

I
'

I

6 7 8 9

(b)

10

FIG. 2. Effective principal quantum numbers (modulo I) of
CaF plotted vs their absolute values. (a) Z+ states; (b) I1 and
4 states. Dots, observed values; lines, calculated values. All

presently known electronic states of CaF are included. The la-
bels at the right indicate for each Rydberg series the dominant
elliptical angular momentum components l including their
phases.

The theoretical method presented here opens up a
range of avenues to be pursued in the future. First of all,
it should be possible to predict several finer features of
the CaF states such as the spin-orbital coupling, which is
a probe of the wave function near the Ca nucleus [15].
The evolution of the eAective principal quantum numbers
y„~

"' as functions of the internuclear distance R may be
ca1culated, giving in eA'ect the electronic potential energy
curves which are the goa1 of standard quantum-chemical
calculations. In addition the R dependence of the quan-
tum defect matrix elements pI7 will allow the coupling
between vibrational and electronic degrees of freedom to
be calculated, i.e., the breakdown of the Born-Oppen-
heimer separation. Experimental information on a11 of
these effects exists already [16].

Second, the method outlined here should allow us to
deal with dipolar systems in general. Obvious candidates
are the alkaline earth halides other than CaF, such as
BaF for which s,p, d as well as f states are core penetrat-
ing and the corresponding more extended system of states
(I=0-3) has indeed been found [17]. The rare gas hy-
drides constitute another class of dipolar systems which
have recently been studied [18] extensively, and where a
comprehensive interpretation of the electronic structure is
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