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Levinson's Theorem for the Dirac Equation
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Levinson's theorem for the Dirac equation is known in the form of a sum of positive and negative
energy phase shifts at zero momentum related to the total number of bound states. In this Letter
we prove a stronger version of Levinson's theorem valid for positive and negative energy phase shifts
separately. The surprising result is that, in general, the phase shifts for each sign of the energy do
not give the number of bound states with the same sign of the energy (in units of m), but instead
are related to the number of bound states of a certain Schrodinger equation, which coincides with
the Dirac equation at zero momentum.

PACS numbers: 03.65.—w

Consider the reduced radial Schrodinger equation

l(l + 1)
~ki +2mV —k uIt = 0,r2

for a scattering state characterized by the reduced radial
wave function uAi(r) subject to the boundary conditions

upi(0) = 0

at the origin and

(2)

rli(0) = ntvr, (4)

and thus establishes a connection between the scatter-
ing phase shift rli(0) at threshold (zero momentum),
for a given angular momentum l, and the number of
bound states ni of the Schrodinger equation (1). If the
Schrodinger equation has a zero-energy solution which
vanishes at the origin and is finite at infinity and yet
not normalizable (it is called a half-bound state or zero-
energy resonance and is possible only if l = 0) then,
as was first shown by Newton [2], Levinson's theorem
is modified to read

qp(0) = (np+ 2)~. (5)

uA;l(r) ~ 2 sin
~

kr ——+ rl&(k) )
at infinity (r ~ oo), where rli(k) is the phase shift. Here
we assume that the potential V(r) is less singular at the
origin than 1/r2 and that it vanishes at infinity faster
than 1/r. Levinson's theorem [1] asserts that

I K
us ——ug, „+(e —m —V) ui, „=0,6K

where e is the energy, V(r) is the time component of
a vector potential, and K = +j., +2, . . . . The quantum
number K is the standard parametrization of the total
angular momentum j = ~v~

—1/2 and of the relative
orientation between the spin and the orbital angular mo-
menturn. The appropriate boundary conditions at the
origin and infinity are

ui, „(0)= 0,

u2, „(0)= 0,

e+ m 2Kpk . farl
sin kr ——+ rl,„k

2e e+m 2

(8)

Levinson's theorem, which turned out to be fairly gen-
eral [3, 4], is one of the most interesting results in quan-
tum theory. It has many potential applications and has
been applied recently in atomic physics [5,6], in quantum
field theories [7, 8], and in solid state physics (where it is
known in a modified form under the name Friedel's sum
rule [9]).

Consider now the reduced radial Dirac equation

u'„„+—ui,„—(e+ m —V) ug, „=0,

l 993 The American Physical Society 2507



VOLUME 70, NUMBER 17 PHYSICAL REVIEW LETTERS 26 APRIL 1993

wh«e k = +~"—m' « = ~/IKI t = l~l —(1 —«)/»
l = t —«, and g,„(k) is the phase shift. To ensure the
consistency of (7) and (8) with (6) we assume that V(r)
behaves like or less singularly than 1/r at the origin and
that it vanishes at infinity faster than 1jr. The first cor-

rect statement of Levinson's theorem for Dirac particles
was given by Ma and Ni [10],

q „(0)+ g ~„(0)= (N„++N„) ~, (9)

which is valid whenever there is no threshold resonance
and

„(0)+g „(0)= (N++N„) sr+ (—I)'(ir/2)[sin g „(0)+ sin g „(0)], (1o)

q „„(0)=~

, (no+ + —,') ~,
n 7t

, (n, + —,') ir,

l=o,
l =O, l, . . . ,

l =0,
(12)

which is valid for the case with a threshold resonance
(which can appear only in the case rc = +1; see [4]).
Here +m is the threshold energy of the Dirac particle,
N+ is the number of positive and N„ the number of
negative energy bound states of the Dirac equation (6),
and q~ „(0) are the phase shifts at threshold. Prior to
the work of Ma and Ni claims were published [11, 12]
stating that Levinson's theorem is valid for positive and
negative energies separately and in the same sense as in
the nonrelativistic case, i.e. , ri~~„(0) = N+a, but later
such claims were found incorrect [10]. However, we shall
prove in this Letter that in a modified sense these claims
are correct and that

+nl +~ l 0) I) ~ ~ ~

q „(0)= &

where n&+ and n- are the numbers of bound state so-
I,

lutions of certain radial Schrodinger equations with the
angular momenta l and t = t v/lr—l. In (11) and (12) the
first case refers to a situation without a threshold reso-
nance and the second case to a situation with a thresh-
old resonance. Equations (11) and (12) constitute the
stronger version of Levinson's theorem for Dirac parti-
cles. Notice that from (9) and (11), (12) it follows that

N++N„- = ni++n,—,

whereas in general N+ g ni+ and N„g n , . Below it-
will be shown that (13) is actually a general statement
(independent of Levinson's theorem).

The basic observation, which we need in order to derive
(11) and (12), is the fact that one can write the Dirac
equation (6) as a set of Schrodinger-like equations. In
fact, eliminating u2,„ from (6), we obtain

r (K+ 1)//
V'

r r e+m-
Eliminating ui, „ from (6) leads to

K (r —1) r. V'

r T 6 —m—

V/—V + 2eV —k ul, „+ ul, „=0.
t. + m —V

V/—V +2tV —k u2 + u =0
e —m —V

(14)

(15)

Equations (14) and (15) are equivalent to the Dirae equa-
tion (6) provided the boundary conditions (7) and (8) are
imposed. Actually it is not necessary to solve (14) and
(15) simultaneously. For instance, if (14) is solved for
ui, „one gets u2, „ through the first of Eqs. (6). In order
to get rid of the last term in (14) and (15) we introduce
the new wave functions ml, „,m2, „defined through +2&V —k m2, „——0, (19)

t (l+1) ~ v' 1 v"+- +—
r2 re —m —V 2c —m —V

3 V'

4 e —m —V)

e+ m —V (r)
~leK

2c

EkK e —m —V (r)
~2&K

+2eV —A: u)l, „——0,

Putting these in (14) and (15), we obtain

t(l+ 1) v V' 1 V"+-
T ~+m —V 2.+m —V

3 V'
+—

4 a+m —Vp

(16)

(17)

(18)

where we used K(r, +1) = I(1+1) and K(K —1)
t (l + 1) which are readily obtained from l = lrl—
(1 —«) /2 and t = l —Ko, ro = r/lrl. Equations (18)
and (19) are of the Schrodinger type except that the po-
tential depends on the energy. Solving (18) and (19) is
equivalent to solving the original Dirae equation (6) pro-
vided the boundary conditions at the origin and infinity,

iUi, „(0)= 0,

~l
toi«(r) ~ 2 siil kr ——+ FJ«(k)

2508



VOLUME 70, NUMBER 17 PHYSICAL REVIEW LETTERS 26 APRIL 1993

m2, „(0)= 0,

~l
(r) 2 siss kr ——+ sk, (k)),

(21)

are taken into account. Equations (18) and (19) are use-
ful because they are not coupled and hence the phase
shift rj,„(k) can be computed using either one of them
without reference to the other and for each of the posi-
tive and negative energies e separately. Yet, we cannot
apply Levinson's theorem to (18) or (19) directly since
the potential in these equations depends on the energy,
and one can show that in this case the theorem is not
valid [4]; However, consider the following equation:

+ //

kl
l(l+1) v V' 1 V"

p2 p 2m V 22m

3 V'

4 2m —Vp

mV —&' ~k+i —0 (22)

—//tU—
kl

l P+1) ~ V' 1 V"
r2 r 2m+ V 22m+ V

4 2m+ V

—2mV —A: m -=0
kl

which are subject to the boundary conditions

tOA t (0) = 0 s

(r) ~2sin
~

kr ——+rl (k) [,+ ~l
kl

(24)

~t
ss - (r) 2 sin kr ——+ i (k)) .s-

ki 2 l

At threshold (k = 0) (22) and (24) coincide with (18)
and (20) for e = m, and similarly (23) and (25) coincide
with (19) and (21) for e = —m. Moreover, both sets of
equations and boundary conditions are analytical near
the threshold. Therefore

(27)

Equations (22) and (23) are just usual Schrodinger equa-
tions, linear in the energy k, so that we can apply Levin-

son's theorem (4) and (5) and obtain the desired equa-
tions (ll) and (12), where nt+ is the number of bound
state solutions (k ( 0) of (22) and n& is the number
of bound state solutions of (23). Actually one would ex-
pect an ambiguity in (26) and in (27), each in terms of
an additive integer multiple of vr. However, it is easy
to see that both integers (say nq and n2) must be zero.
This follows from the fact that the simultaneous change
of m to —m and K to —x is a symmetry operation, which
implies nq = n2. Equations (9) and (13), on the other
hand, imply nq = n2—, and hence both integers are zero.
To prove that (13) is valid generally (independently of
Levinson's theorem) we make the following observation.
Let us multiply the potential V in (18) and (19) and in

(22) and (23) by a coupling constant g. For g = 0 there
are no bound states and (13) is (trivially) valid. We now
change g continuously from 0 to 1 and show that (13) re-
mains valid. Assume that (13) is valid for some value of
g. Then, if g is increased, at some point a (half-) bound
state will either appear or disappear. This happens si-
multaneously for (18) and (22), and/or for (19) and (23)
and in the same direction, for the corresponding equa-
tions are equal at and analytic near k = 0. Hence the
process of bound states entering or leaving through the
point k =. 0 does not alter the validity of (13). But this is
not all. Parallel to this process there is a motion of bound
states of the Dirae equation (18) and (19) through the
point e = 0 (equivalently k = —m ). This process, how-

ever, does not change the total number of bound states
since, here, if a positive energy bound state disappears,
simultaneously a negative energy bound state appears or
vice versa. These two processes are all that happens to
the number of bound states, if we drive g from 0 to l.
Consequently, we arrive safely at g = 1 with (13) still
being valid.

It is an interesting fact to notice that (22) and (23)
do not correspond to the usual expansion based on the
Foldy-Wouthuysen scheme (see [13]). More details and
an application of Levinson's theorem to a nonperturba-
tive approach to quantum electrodynamics will be given
in [4].
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