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Many-Body Perturbation Theory Calculations of Two-Photon
Absorption in Lanthanide Compounds
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Third-order spin-orbit contributions to two-photon absorption rates were introduced by Judd
and Fooler when the second-order theory was found to be inadequate to explain the experimental
data for Cd + ions in LaF3. However, only one of the two perturbation terms that arise in third
order was considered. When the omitted term is added, "unlinked" parts are canceled and the
good agreement with experiment is lost. Inclusion of previously overlooked scalar two-electron
contributions can restore the agreement between theory and experiment.

PACS numbers: 78.50.Ec, 31.20.Tz, 34.80.Kw

In 1981 Dagenais et aL [1] made quantitative measure-
ments of two-photon absorption probabilities within the
4f7 configuration of Gds+ substituted for Las+ in LaFs.
The relative integrated intensities from the ground multi-
plet, ~7g2, «the &Tip, &5iq, and P3iqmultipletswere
found to be poorly reproduced by the standard second-
order theory developed by Axe [2].

Judd and Pooler [3] pointed out that second-order con-
tributions to these "spin-forbidden' transitions are un-
usually small, and calculated third-order contributions
that include spin-orbit perturbations within intermedi-
ate states. These perturbations lead to spin-dependent
operators, including a scalar operator that especially en-
hances the EJ = 0 transition S7i2 ~ Pqi2 This.
idea was elaborated on by Downer and co-workers [4]
and by other workers. Kibler and Gacon [5] devel-
oped a symmetry-adapted formalism in which the scalar
and rank-two contributions were handled phenomenolog-
ically. This approach was used to explain polarization
dependencies of the AJ = 0, ~Fp ~ sDo transition in
Sm2+ and Eus+ in various materials [6,7] in terms of in-
terference effects between scalar and rank-two contribu-
tions. Third-order terms were also found to be important
for spin-forbidden one-photon transitions [8]. However,
a close examination of Judd and Pooler's calculations re-
veals a problem. They contain "unlinked" terms that are
canceled in "many-body perturbation theory" [9—11].

Goldstone [9] used time-dependent perturbation the-
ory and the adiabatic theorem to prove the cancellation
of all unlinked terms in the perturbation expansion of the
energy of a nondegenerate ground state. Over the years
refined proofs have appeared, the nondegenerate condi-
tion has been removed, and many-body calculations have
become standard in theoretical studies of nuclear, con-
densed matter, atomic, and molecular systems [10,11].

Many-body calculations often employ the concept of
a "model space. " Rather than solving for the eigenval-
ues and eigenstates of the full Hamiltonian, an "effective
Hamiltonian" is diagonalized within the model space, and
the expectation values of "effective operators" are eval-
uated between the model-space eigenvectors [10,11]. In
this paper we use the notation of Lindgren and Morrison

[10]. In extending the formalism to include atom-photon
interactions the energy denominators are modified by the
inclusion of photon energies [12,13].

Ng and co-workers have applied many-body techniques
to the calculation of energy levels [14,15] and one- and
two-photon transition intensities [16] of lanthanide ions
in solids. The numerical calculations were only taken to
second order, but Ng and Newman [14] list all third-order
diagrams. Ignoring diagrams involving core states and
assuming two photons of identical energy w (5 = 1), we

have only one second-order diagram and two third-order
diagrams involving the spin-orbit interaction V,~ and the
dipole moment r. These are shown in Figs. 1(a)—l(c),
and have algebraic expressions
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FIG. 1. Second- and third-order one-electron two-photon
absorption diagrams. For details of notation see Ref. [10]. A
single up-going arrow represents a virtual orbital; a double
arrow a valence orbital. Folded valence lines have a circle
around their arrows. Photons are represented by wavy lines
and the spin-orbit interaction by a triangle. Diagrams (a),
(b), and (c) correspond to Eqs. (1), (2), and (3) of the text,
respectively. Diagram (c) is folded; diagram (d) is unlinked.
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where I, J, and K label states of the 4f~ configuration,
and S and T states of the 4f~ 15d configuration. The
unlinked diagram arising from the first sum of Eq. (4) is
canceled by the second, leaving Eq. (2) from the first and
Eq. (3) from the second [10].

The effective one-electron operator for two-photon ab-
sorption may be written in terms of standard U(") and
W(ik)k tensors [6]. For the "second-order" and "third-
order spin-orbit" contributions we have

VTpA = C[2]U (ele2)2 (2) (2)

~TpA = C[(11)0]~ ' (&1&2)
3S (ii)o (o)

+(C[{11)2]~ + C[(13)2]~ ) ' (&1&2)

(5)

where (ere2) is a coupled product of the polarization(K) .

vectors of the photons. Notice that all the radiation
polarization dependence is contained in the (ere2)
In particular, for single-beam circular polarized light,
(ere2) = 0. Only for C[{11)0]does our evaluation differ(o)

from Judd and Pooler [3]. Their unlinked terms lead to
the tensor product U VT, proportional to W(~~)
which enhances the C~(qq)0~ parameter. When the virtual
orbital is Gd, Judd and Pooler's "unlinked" result is

C[{11)0]= 7Z [2gsd/3 + (N —1)(4f] (7)

where 7Z. = ~~(5dlrl4f) /(E4t —s'sg), and N is the
number of 4f electrons (7 for Gds+). In contrast, we
obtain the "linked" result

In these expressions, i, j, and k label valence (4f) or-
bitals in our (initially degenerate) 4f~ model space, s
and t label virtual orbitals outside the model space (nd
or ng), and the s are orbital energies. Each term contains
a product of a creation operator and an annihilation op-
erator for 4f orbitals. The diagram corresponding to Eq.
(3) [Fig. 1(c)] is commonly referred to as "folded" [10,11].

Judd and Pooler [3] have expressions equivalent to Eqs.
(1) and (2), but instead of Eq. (3) they have an unlinked
expression involving products of operators acting on two
different electrons [Fig. 1(d)]. This is because they omit
one of the terms required in third order. Using states of
the 4f and 4f~ 15d configurations, as opposed to the
orbitats used in Eqs. (1)—(3), we add this neglected term
to their Eq. (3) to obtain

(~lrlT) (TI&-l~) (~lrll &

(Er —ET + ~) (Er —Es + u))

C[(ll)0] = %[2(sg/3 + (—1)(4f] (8)

This differs from Eq. (7) by the removal of N, which dra-
matically reduces C[{11)0],and with it the enhancement
of the S7y2 ~ P7y2 transition used by Judd and Pooler
to explain the experimental data. In order to recover
good agreement with experiment we shall have to find
another contribution, scalar in J, to selectively enhance
the S7y2 —+ P7y2 transition.

It has been shown that third-order perturbations in-
cluding the Coulomb interaction lead to many-electron
"correlation" effects that have a large influence on one-
and two-photon transition intensities in lanthanide corn-
pounds [17]. The effective one-electron contributions
considered in Ref. [17] cannot affect the relative intensi-
ties of the transitions considered here, since they merely
scale the Ct2~ parameter, but two-body scalar operators
can selectively enhance the S7y2 —+ P7y2 transition.
Two-electron "third-order correlation" contributions to
two-photon absorption have the form

+TPA ) D[(kgkg)K]U ' (&1&2) '
)

k1&A:g,K
(9)

where U(k'"')~ = P,&.[u(i){"')u(j){"')](~)is a two-
electron operator. The i,j sum is over the 4f electrons.
For the absorption of two photons of the same energy, K
is restricted to 0 or 2. Though a scalar one-electron oper-
ator (i.e. , U(0)) is a constant and therefore cannot induce
transitions, there is no such restriction on two-electron
operators (except when ki = k2 = 0). In calculating
contributions to the D~(I„I„)KI parameters it is impor-
tant to avoid overcounting the scalar central potential
used in the zero-order Hamiltonian [10,17].

We present the third-order two-photon, two-electron
diagrams in Fig. 2, where for clarity we have omitted
the diagrams involving excitation of core orbitals as well
as the diagrams which are Hermitian conjugates of Figs.
2(b) and 2(d). Folded diagram 2(e) is non-Hermitian
(this is a general property of many-body Hamiltonians
[10]). In our calculation we Hermitize it by averaging it
with its Hermitian conjugate. This folded diagram domi-
nates because the radial integrals R"(4f4f, 4f 4 f) are sig-
nificantly larger than the B," for nonequivalent orbitals.
In fact, the R"(4f4f, 4f4f) are the same order of magni-
tude as the energy denominators, e4f —c5p, and consider-
ation of higher orders is necessary to achieve convergence.
This slowness of convergence is unique to these folded
diagram contributions to intensities and does not affect
calculations of the effective Hamiltonian, such as calcu-
lations of the Slater parameters [10,18], because in that
case the dominant effects involve the excitation of two
electrons, and therefore larger denominators. For transi-
tion intensity calculations it may be preferable to expand
the model space to include both 4f and 4f id, in
analogy to the calculation of the ground-state energy of
beryllium [10], an idea that has been considered [19,20].
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In presenting our calculations, we restrict ourselves to
total intensities for two photons of the same linear po-
larization, summed over j multiplets. In this case the
K = 0 and K = 2 contributions may be evaluated sepa-
rately. For each K we sum the products of the reduced
matrix elements with the respective parameters, square
the result, and multiply by the appropriate factors (1/3
for K = 0 and 2/15 for K = 2) arising from the po-

larization tensor (eie2) and the summation over the
Mj components. In Table I we list the reduced matrix
elements relevant to our discussion, calculated using the
parameters given by Carnall et aL [21] for Gds+:LaFs.
Numerical calculations of the perturbation expressions

(d)

FIG. 2, Some third-order two-electron two-photon absorp-
tion diagrams. The notation is the same as Fig. 1. The
Coulomb interaction is represented by a dotted line. Folded
diagram (e) dominates our correlation calculation.

were done using Hartree-Fock-Slater orbitals, generated
in a finite box to avoid the necessity of using continuum
states [22]. Parameters given in Table I were calculated
considering only the 4fs5d excited con6guration. In ex-
tending the calculation to include all allowed configura-
tions we find that other d-orbital contributions, including
core excitations, are negligible, and g orbitals provide a
total contribution of less than 15%%uo of the 4fs5d contri-
bution.

Coulomb correlation parameters, DI~k, k, ~~j, are listed
in Table I only for the dominant folded diagram [Fig.
2(e)]. By adding successive folded Coulomb perturba-
tions, we have estimated a summation to infinite order.
To do a complete evaluation of the remaining correlation
contribution, we have to calculate not only the rest of the
the third-order Coulomb diagrams, but also fourth-order
diagrams involving both the spin-orbit and Coulomb in-
teractions. Also, due to the slowness of convergence,
terms involving R"(4f4f, 4f4f) radial integrals must be
taken to even higher orders. We have carried out an ex-
tensive evaluation of these diagrams. The contributions
are not particularly large relative to Fig. 2(e). However,
the Coulomb and spin-orbit contributions tend to cancel
so the results are quite sensitive to the order to which
the calculation is taken.

Calculations of transition intensities are presented in
Table II. Each row gives relative intensities, scaled to the

S7/2 ~ Ps/z transition. Although the "unlinked" ex-
pression used by Judd and Pooler provides a good fit to
the experiment, we find that considering only second-
order and linked third-order spin-orbit terms (line 3)
greatly underestimates the Sq/2 —+ Pq/z transition. As
shown in the fourth line, when we consider second-order
and third-order Coulomb terms, the S7/z —+ I's/2 tran-
sition is greatly underestimated. However, when we add
both spin-orbit and Coulomb terms to the second-order

TABLE I. Reduced matrix elements of the operators used in Eqs. (5), (6), and (9) between the
S7/2 multiplet and the Pp multiplets of Gd +, together with calculated parameters. Note that

the U "'"' are two-electron operators. Parameters are scaled so that 0[2] = 1.

Reduced matrix elements
Operator
U (2)

~(»)0
~(l l)2

~(13)2
U(22)o
U(44) o

U (66)o

+(02)2

U(22) 2

U(24) 2

U(44) 2

U (46)2

U (66)2

( +&/211 II S&/&)

0.0033 0.0177
0 0
2.2288 2.1060

—0.0070 —0.0077
0 0
0 0
0 0
0.0037 0.0200

—0.0054 —0.0040
—0.0004 —0.0015
—0.0144 —0.0139
—0.0002 —0.0006
—0.0249 —0.0251

('&~/~ II II'S7/2&
—0.0278
—1.5645
—1.5262
—0.0285
—0.0067
—0.0162
—0.0272
—0.0315

0.0020
0.0018
0.0106
0.0005
0.0194

&[(»)o)
|-"[(»)2)

+[(»)2]

D[(22)o]
D[(44)o]
D[(66)o]
+[(02)2]

D[(22)2)
D[(24)2]

D[(44)2]

D[(46)2]

D[(66)2]

Parameters
1

—0.015
0.0052

—0.0039
1.89
1.45
2.21
0.19

—0.35
0.92
0.07
0,41
0.88

This value is obtained using the linked expression,
we obtain 0.142.

Eq. (8). For the unlinked expression, Eq. (7),
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TABLE II. Multiplet-multiplet intensities for two-photon absorption in Gd +:LaF3. Each row is

independently scaled to the 87/2 ~ Pz/2 transition.

Experiment
Second-order
Second-order and third-order spin-orbit
Second-order and two-electron
Second-order, spin-orbit, and two-electron

8
~7/2 ~ P3/2

6

1
1
1
1
1

8
S7/2 —+ P5/2

6

5,4
29
3.7
0.011
2.4

8
~7/2 ~ P7/2

6

320
71
12.
76

397

This value is for the linked expression for C~~~~~o~. With the unlinked expression this intensity is
557.

terms (line 5) a good fit to experiment is restored. We
have also carried out calculations for individual Stark
components and for circular polarization. Though our
calculations include two-body operators, the relative bal-
ance of rank-zero and rank-two operators is approxi-
mately the same as in previous calculations [4], and there-
fore the results are not very different.

This work may have signi6cant implications for calcu-
lations of other lanthanide and actinide transitions. We
expect the greatest observable consequences of correla-
tion to arise in comparisons between transitions extend-
ing over a wide range of energy values, and for those
ions with low-lying excited con6gurations, where large
Coulomb contributions can cause significant breakdown
of the conventional closure approximation, an idea previ-
ously discussed by Downer et al for Eu. + ions [23]. It
should be noted that most recent work (e.g. , Ref. [6]) has
concentrated on the interesting polarization effects aris-
ing from the interference between rank-zero (scalar) and
rank-two operators, and does not distinguish between
rank-zero spin-orbit and rank-zero correlation operators.
We have not yet included the crystal-field effects required
to explain transitions for which AJ ) 2 [4]. This will
be necessary for a complete treatment of the Gd + two-
photon spectrum.

As well as two-photon absorption, Raman scattering
and one-photon transitions may have large correlation
contributions. In the case of Raman scattering, these
contributions may affect the asymmetry ratios that have
proved so difficult to calculate accurately [19]. For one-
photon transitions, calculations of the spin-orbit con-
tributions [8] will be modified and correlation eKects
added. However, for most one-photon transitions where

W(iz)0 or U(k&k&)0 t~~~~ ~ould be;mportant there
are dominant magnetic-dipole matrix elements. A no-
table exception is the Eo —+ Do transition in Eu +
and Smz+ [24]. It appears that correlation will also re-
sult in large nonscalar two-electron terms, and the one-
electron parametrizations that have provided the basis
for interpretation of one- and two-photon transition in-
tensities in lanthanide ions [16] may need to be reconsid-
ered. We note that the effects of spin-orbit and Coulomb
perturbations on transition intensities were discussed by
Wybourne [25] many years ago.

We wish to acknowledge the hospitality of Xia Shang-
Da and the University of Science and Technology of
2494

China during the formative period of this work. We
thank H. J. Kooy, Jr. , for supplying the computer soft-
ware used to generate our diagrams.

Present address: Department of Physics and Astronomy,
University of Canterbury, Christchurch, New Zealand.

[1] M. Dagenais, M. Downer, R. Neumann, and N. Bloem-
bergen, Phys. Rev. Lett. 46, 561 (1981).

[2] J. D. Axe, Phys. Rev. 136, A42 (1964).
[3 B. R. Judd and D. R. Fooler, J. Phys. C 15, 591 (1982).
[4] M. C. Downer, in Laser Spectroscopy of Solids II, edited

by W. M. Yen (Springer-Verlag, Berlin, 1989), p. 29.
[5] M. Kibler and J. C. Gacon, Croat. Chem. Acta 62, 783

(1989).
[6) J. C. Gacon et aL, J. Lumin. 45, 162 (1990).
[7 J. C. Gacon et al. , Eur. J. Solid State Inorg. Chem. 28,

113 (1991).
[8) G. W. Burdick, M. C. Downer, and D. K. Sardar, J.

Chem. Phys. 91, 1511 (1989).
[9) J. Goldstone, Proc. R. Soc. London A 239, 267 (1957).

[10] I. Lindgren and J. Morrison, Atomic Many Body Theory-
(Springer-Verlag, Berlin, 1982).

[11] T. T. S. Kuo and E. Osnes, Folded Diagram The-ory of
the Effective Interaction in Nuclei, Atoms and Molecules
(Springer-Verlag, Berlin, 1990).

[12] M. S. Pindzola and H. P. Kelly, Phys. Rev. A ll, 1543
(1975).

[13] L. Jonsson and G. Wendin, J. Opt. Soc. Am. B 9, 627
(1992).

[14] B. Ng and D. J. Newman, J. Chem. Phys. 83, 1758
(1985).

[15] B. Ng and D. J. Newman, J. Chem. Phys. 87, 7110
(1987).

[16] M. F. Reid and B. Ng, Mol. Phys. 67, 407 (1989).
[17] L. Smentek-Mielczarek and B. A. Hess, J. Chem. Phys.

90, 1390 (1989).
[18] J. Morrison and K. Rajnak, Phys. Rev. A 4, 643 (1971).
[19 S. Xia, G. M. Williams, and N. M. Edelstein, Chem.

Phys. 138, 255 (1989).
[20] D. Garcia and M. Faucher, J. Alloys Comp. 180, 239

(1992).
[21] W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S.

Rana, J. Chem. Phys. 90, 3443 (1989).
[22] Y'. M. Poon, Comput. Phys. Commun. 29, 113 (1983).
[23] M. C. Downer, C. D. Cordero-Montalvo, and H. Cross-

white, Phys. Rev. B 28, 4931 (1983).
[24) G. W. Burdick and M. C. Downer, Eur. J. Solid State

Inorg. Chem. 28, 217 (1991).
[25] B. G. Wybourne, J. Chem. Phys. 48, 2596 (1968).


