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Spontaneous Symmetry Breaking in Quantum Frustrated Antiferromagnets
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We show that the spontaneous symmetry breaking mechanism in quantum antiferromagnets is
due to the collapse, in the thermodynamical limit, of an in6nite set of excited states onto the ground
state. We characterize both the nature and the scaling of the relevant tower of states for the quantum
antiferromagnet on the triangular lattice. Comparison with recent numerical results for the S = 1/2
case gives strong support for the existence of long range order in this system.
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Despite many theoretical and numerical studies, the
nature of the order of the 2D quantum S = 1/2 anti-
ferromagnetic Heisenberg model on the triangular lat-
tice (AFT model) at T = 0 is still very much debated.
Whereas various exotic states have been proposed [1—4],
results from renormalization group and large-N expan-
sion conclude stability of the semiclassical Neel ground
state for a sufficiently large value of the spin S [5,6].
This conclusion is highly questionable for finite value of
S and in particular for S = 1/2 because of strong frus-
tration effects in this system. In fact one must have re-
course to numerical methods and the only known results
for S = 1/2, obtained by exact diagonalization on fi-

nite lattices, have led to contradictory conclusions when
extrapolated to the thermodynamical limit [7—9]. Thus
there is up to now no definitive conclusion about the exis-
tence of long range order in the S = 1/2 AFT model. The
main problem is to understand —and thus to characterize—the mechanism of spontaneous symmetry breaking
(SSB) that occurs in the thermodynamical limit. The
diKculty lies in the fact that for any finite size antiferro-
magnetic system, the ground state, contrary to ferromag-
nets, is believed to be a singlet, rotationally invariant,
and nondegenerate. Anderson was the first to point out
that the SSB mechanism involves in fact a whole tower of
low-lying excited states that collapse, in the infinite vol-
ume limit, onto the ground state [10]. Since these states
are in general not rotationally invariant, they can sum
up to a nontrivial state in which the spins point in a def-
inite direction with a Neel-like order. For large systems,
this state can persist a very long time and justifies the
usual semiclassical picture of SSB, Thus to be able to
conclude about SSB in antiferromagnets from finite size
data, one needs not only reliable predictions for the lead-
ing scaling behavior of ground state quantities but also to
characterize the nature and the scaling of the low-lying
excited states responsible for SSB. To this end, we need

the effective theory that describes the low energy sector
of the original Heisenberg model and which, contrary to
the semiclassical spin wave theory, preserves rotational
symmetry. We derive this theory in the large 8 limit,
keeping in mind that renormalization group arguments
will allow us to extend our results to finite values of the
spin S.

The quantum tops modeI. —The Hamiltonian of the
quantum AFT model for N2 spins is

J = Si+ S2+ S3,
3 ~S+1 ~S-1

t ~ 2
1

2
2 s

~3+ 1
S2+ S3,

(2)

such that J and the "staggered magnetization" (Pt, $2)
span the unit and two-dimensional irreducible represen-
tations of C3„.

Classically, J has a vanishing expectation value in the
ground state which leads to the well-known 120 struc-

H = J ) S(x) S(y),
(*u)

where J ) 0, S2 = S(S + 1), and [S'(z), Ss(y)]
ib „e's"S"(x). The sum in (1) is performed over all near-
est neighbors of the triangular lattice.

The Hamiltonian (1) is invariant under both the ac-
tion of the usual O(3) group of spin rotations and of the
discrete Cs„group of the triangular lattice. Accordingly,
the system can be split into three sublattices with spins

Si, S2, and S3, defined on each triangular elementary
cell.

We now introduce on each cell the following fields:
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ture. In this case (Pr, 42, gs) is an orthonormal frame,
i.e. , a rigid body, and is taken as the order parameter.
Furthermore, it can be shown that, in the long distance
limit, the classical AFT model is equivalent to a system
of interacting symmetric tops, the symmetry of the tops
being a consequence of the original Cs„invariance of (1).
It is then natural to expect that, when S is sufficiently
large, the low energy effective Hamiltonian for the quan-
tum AFT model will be that of quantum symmetric tops.

Quantum mechanically, the components of J on a fixed
orthonormal basis x', J& ——J x.', i = 1, 2, 3, act as
generators of O(3) left rotations:

[Jr', J~] =ie'~"Ji, [Ji,g] =ie'~"P", a = 1,2, 3.
(3)

The commutators and the products of the P' 's are less
trivial but they simplify in the large S limit to

[P', gb] = O(J/S), P Pb = 6 b+0(J/S) . (4)

To go further, we need the components of J with respect
to the P 's, J R = J P which in the large S limit obey
the commutation relations

[J rr, Jbrr] = i—e b J R+ O(J/S),

[J ~, P'b] = ie—b,P', + O(J/S) .

We see that the J~rr's act as generators of O(3) right
rotations that mixes the P 's together. When J (( S, the
commutators (3) to (5) become exact and we recognize
the algebra of a quantum top.

The low energy, long distance effective Hamiltonian of
(1) is now obtained, as usual, by taking the continuum
limit. Substituting in (1) the spin operators by their
expression in terms of J and (Pr, P2, Ps), we obtain the
following Hamiltonian when S )) 1 [11]:

Hrv(x) = d'x J'(x) + !

(1
2Xr &2Xs 2Xl )! JsR(x) +»(['7&r(x)]'+ ['7&2(x)l ) + ps[+0 3(x)]

H~ is the Hamiltonian of N quantum symmetric tops
with principal axes Pr(x), Pz(x), and Ps(x) and angu-
lar momentum J(x). In Eq. (6), (yr, yr, gs) are the
principal inertia rnomenta of the tops, and (pr, pr, ps)
(x S are stiffness constants. In addition to the global
rotational O(3) symmetry, Hamiltonian (6) is invariant
under the action of the O(2) right group generated by
Jsrriv —f~g Js(x). This O(2) invariance reflects the orig-
inal |3„symmetry of the triangular lattice. Its continu-
ous character is an artifact of the continuous limit.

The quantum phase transition. —Let us now qualita-
tively discuss the behavior of this system according to the
values of the coupling constants entering in (6) . When py
is small, we expect that, at large scale the tops are almost
decoupled. At these scales, the system consists in inde-
pendent tops with inertia momenta of order 1+O(1/N).
There is a gap in the spectrum and no symmetry break-

ing. For sufficiently large value of py, the individual tops
are tightly bound so that, at large scale, the whole system
behaves as a single top with effective inertia momentum
oc N . Therefore there is no gap and the system ex-
hibits long range order. Since we expect a phase tran-
sition between these two regimes, there should exist, in
the Heisenberg system, a critical value S, above which it
is ordered.

To investigate this quantum phase transition we need
the partition function Zrv = Tr(exp /3H~) in th—e limit
where P ~ oo. As usual, Ziv can be expressed as a
functional integral:

Ziv = DR(x, ~)e

with
P

Sw p ——— dh d x(Tr[Pp(R rOpR) +Pg(R B,R) ]).

which is the action of the O(3)O(2) /O(2) quantum non-
linear sigma (NLo) model [5,12]. In Eqs. (7) and (8),
R(x, ~) = (P»Ps, Ps) is a SO(3) matrix; 8„=(Bp, 0, ) =
(8/8~, 8/Bx, ); i = 1, 2; and P„=diag(pr„,pr»ps@),
p = 0, J are diagonal matrices which contain the cou-
pling constants. Whereas the p~'s can be identified with
the stiffness constants appearing in (6), the pp's are re-
lated to the inertia momenta by y~ = —Tr(PpT ) where
T 6 Lie[SO(3)]. When P and N go to infinity there
is a phase transition as one varies the P„'s. The re-
cursion equations for these parameters have been given
in [5]. They admit a nontrivial ultraviolet fixed point,P„.The critical surface associated to this fixed point di-

! vides a disordered phase, at small S, from an ordered
phase with SSB at large S. In this Neel phase, ac-
tion (8) describes three interacting massless modes (spin
waves) with bare velocities ci = c2 = g(pr~ + ps~)/yr,
cs = /2»z/ys. Their low energy physics is governed by
the trivial infrared fixed point at S = oo so that they are
infrared free. At long distance the spin wave spectrum
is u~ = c~k, a = 1, 2, 3, where the c~'s are the velocities
renormalized by quantum fluctuations. It is important
to notice that in the spin wave phase all models with
S & S, have the same long distance behavior governed
by the infrared fixed point at S = oo. This justifies t2,
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posteriori the large S limit used in (6) for all systems
with S ) S,.

The tower of states and the spontaneous symmetry
breaking. —Since one is not able to calculate precisely
S, for the AFT model (6), the relevant question is to
characterize the low-lying spectrum of (1) that should
be observed in finite systems when there is SSB in the
thermodynamical limit. We want therefore the effective
Hamiltonian for the first excited states. It is convenient
to work with the path-integral formulation of the theory.

The idea is to integrate out in (8) the spatial degrees of
freedom, i.e. , the k g 0 modes, to obtain an efFective ac-
tion at the scale N for the A: = 0 mode. Prom this action
follows the one body effective Hamiltonian. To do this
we split up the field R(x, 7) in (8) into Ro() ) exp P(x, r)
where Ro() ) and P(x, ) ) represent the k = 0 and k g 0
modes, respectively. By expanding R to order gP and by
integrating out P in (8), we find, after some algebra, at
leading order in N the Hamiltonian of a single symmetric
top:

where

~N 1"( )= '"'N2 2„(N)' 2„(N)
2

(N) ( 3RN)

1
EpN = —[cs(N) + 2ci(N)] ) k

1 j(j+1) ( 1
), g, R= ON

Xz g X3
m'

)I

where j(j+ 1),mL„and mR are the eigenvalues of J2N,

Jz~, and J3+pf respectively. For each value of j, there
are (2j+1) eigenstates with degeneracy 2(2j+1). Apart
from these states, the other low energy modes of (6) have
k g 0 and are the first magnon states which scale as 1/N.
Thus, there are j~~„~Nstates in (ll) that collapse
onto the ground state, when N ~ oo, faster than the first
magnons and which define the relevant tower of states.
With these states one can form the symmetry breaking
Neel state in which the order parameter has a nonzero
mean value with an uncertainty of order 1/v N. Of
course, this state being not an eigenvector of (11) has
a finite lifetime of order v¹Because of the long
range order, the system develops a macroscopic collective
variable with a "mass" of order N2 which is localized in
the infinite volume limit.

At the critical point S = S„the system becomes
Lorentz invariant when N ~ oo: c (N) —+ c' [5]. In
addition we have y (N) ~ y'/N as follows from simple
dimensional analysis. The predicted scaling for the tower

is the leading quantum correction to the classical ground
state energy. The Hamiltonian (9) describes the angu-
lar part of the Huctuations of the total order parameter
rt) N ——fN, p~(x), a = 1, 2, 3, whose modulus is equal, at
leading order in N, to its infinite volume limit. JN and
J3+~ are respectively the total angular momentum and
its projection on the symmetric axis psN. Finally, c (N)
and g (N), a = 1, 2, 3, are the renormalized values of
the spin wave velocities and inertia momenta at scale ¹

We are now in a position to discuss the properties of the
tower of states according to the spin S.

When the system has long range order, i.e. , when S )
S„bothc (N) and y (N) have finite limits, c and y,
when N —+ oo. The energy of the first excited states of
(6) is

(cs + 2ci) ) (»)
where 6 is a numerical constant which depends on lat-
tice. As discussed above, the order parameter is the
rotation matrix R(x, )-) = (Pi, Pz, Ps). As a conse-
quence of the O(2) right symmetry the fields Pi and
P2 renormalize with the same constant and we have

((4iN) ) = (($2N) ) = MN while ((psN) ) = rN. We
find for the leading finite size correction of M~ and r~

e~ =e

Ng, c~g
(15)

where p depends on the lattice.
While the scaling given by Eqs. (13), (14), and (15)

constitutes the standard test for long range order in the
ground state, the observation of the tower of state (11)
with the predicted degeneracy and scaling provides a test
which involves a tuhote set of low lying excited states.
Since it is deeply related to the mechanism of SSB, it
constitutes a richer and more effective test for long range
order.

Let us now return to the S = 1/2 AFT model. Prom
Eqs. (2) we identify MN in (14) with the sublattice mag-
netization and KN in (15) with the helicity operator as
defined for example in [13]. Numerical results obtained

of state changes drastically:

1 j(j+1)
+j)ml. )mR +ON + N 2y* (12)

At this point the tower of states collapses onto the ground
state together with the First magnon states. This is com-
pletely consistent with the fact that the theory is critical.
This result is independent of the space dimension.

To complete our discussion, we need the leading finite
size corrections for the ground state observables: e~, the
total energy per spin, and the mean value of the total
order parameter (piN, pqN, psN). We find for the ground
state energy
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for the ground state quantities e~, M~, and e~ for dif-
ferent lattices up to 27 sites have led to contradictory
conclusions [7—9]. Very recently, extended numerical re-
sults have been obtained by exact diagonalization on lat-
tices up to 36 sites [14]. The authors have identified a
whole set of low lying excited states that constitute the
tower of state (11) but they did not observe the correct
degeneracy associated to a symmetric top. This is prob-
ably due to the small size of the sample. However, they
found (2j+1) states for each value of the spin j and the
predicted scaling I/K for SSB as given by (ll). This
rules out the possibility that the S = 1/2 AFT model is
at a critical point as it was suggested in [15] and gives
strong support for the existence of a Neel ground state
in the thermodynamical limit.

We thank C. Lhuillier for interesting discussions. Lab-
oratoire de Physique Theorique des Liquides is a lab-
oratoire associe au CNRS VRA 765. Laboratoire de
Physique Theorique et Hautes Energies is a laboratoire
associe au CNRS VA 280.

~ ~ Electronic address: azalptl. jussieu. fr
Electronic address: delamottlpthe. jussieu. fr

Electronic address: mouhannalpthe. jussieu. fr
[1] P. Chandra and B.Doucot, Phys. Rev. B 38, 9335 (1988).
[2] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59,

2095 (1987).
[3] M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys.

Rev. B 40, 10801 (1989).
[4] P. Chandra, P. Coleman, and A. Larkin, Phys. Rev. Lett.

64, 88 (1990).
[5] P. Azaria, B. Delamotte, and D. Mouhanna, Phys. Rev.

Lett. 68, 1762 (1992).
[6] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[7] H. Nishimori and H. Nakanishi, J. Phys. Soc. Jpn. 57,

626 (1988).
[8] S. Fujiki, Can. J. Phys. 65, 489 (1987).
[9] M. Imada, J. Phys. Soc. Jpn. 56, 311 (1987).

[10] P. W. Anderson, Phys. Rev. 86, 694 (1952).
[11] In fact a direct microscopic derivation leads to yi = gs

and p3 ——0. However, since these conditions are not sta-
ble under renormalization, we have to introduce from the
beginning the most general O(3)O(2) invariant Hamil-
tonian (6).

12] T. Dombre and N. Read, Phys. Rev. B 39, 6797 (1989).
13] S. Fujiki and D. D. Betts, Can. J. Phys. 65, 76 (1987).

[14] B. Bernu, C. Lhuillier, and L. Pierre, Phys. Rev. Lett.
69, 2590 (1992).

[15] R. R. P. Singh and D. A. Huse, Phys. Rev. Lett. 68, 1766
(1992).

2486


