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Possibility of Observation of Nontrivial Magnetic Order by Elastic Neutron
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We consider the neutron scattering in the magnetic phases with zero average sublattice magne-
tization (double- or triple-spin correlator as an order parameter). External magnetic field induces
different magnetizations on the different sublattices in such a system. As a result, the new purely
magnetic Bragg peaks for the elastic neutron scattering appear. We present the estimates of inten-
sities in the Bragg peaks and their angular dependence on the external magnetic field. This could
serve as a test whether the nontrivial magnetic order exists in some heavy fermion compounds, like
URu2Si2 or UPt3 and possibly in the high-T, oxides.

PACS numbers: 75.25.+z, 75.30.Mb, 75.40.Cx, 75.50.—y

The vast majority of magnetic systems order antifer-
romagnetically below some transition temperature, T~.
However, less common ground states may also exist. The-
oretically this is expected for the Heisenberg Hamiltonian
with frustrated interactions (see, e.g. , [1,2]). Experimen-
tally so-called quadrupole order was observed long ago
in UPds and CeBs [3]. The problem of the non-Neel
magnetic states has recently attracted much theoretical
attention in connection with the peculiar magnetic prop-
erties of both the high-T, oxides in the normal phase and
some of the heavy fermion compounds, like UPt3 and
URu2Si2. Both classes display the strong correlated sys-
tem features together with the itinerancy of the electronic
system.

As for the high-T, oxides, the insulating 3D Neel state
seen for the stoichiometric I a2Cu04 is easily destroyed
by a very small amount of dopants (Sr, Ca). On the other
hand, the in-plane spin-spin exchange interaction is so
strong (J 0.15 eV) that it seems to be natural for the
system to preserve some long-range magnetic order even
if the dopants are present, at least at zero temperature.
Unfortunately, the method proposed below probably will
not answer this question.

Another challenging example is given by the heavy
fermion compounds, UPt3 and URu~Si2, where an an-
tiferromagnetic order is seen below 5 K and 17.5 K, cor-
respondingly. The puzzle is that the staggered magneti-
zation turns out to be extremely small, (mz) 10 2p, &

[4], while a large specific heat anomaly is seen at 17.5
K for URu2Si2. The transition, as proved by unpolar-
ized neutron scattering, seems to be of a magnetic origin
[4], but the smallness of the sublattice magnetization is
hardly compatible with the observed entropy loss. It was
suggested in [5] that the actual driving order parameter
could be the triple-spin correlator while the small mo-
ments appear as a perturbation due to a weak antiferro-
magnetism mechanism. For what follows, it is essential
to keep in mind that the magnetic transitions mentioned
above double the lattice unit (i.e. , there are two sublat-

tices). Some other substances, like organic conductors,
may also be suspicious for the unusual magnetic order.
To conclude, there are reasons to expect the non-Neel
type of ordering in a number of substances.

It has also been known for a long time [6, 7] that most
of the bulk properties of such non-Neel phases would be
indistinguishable from those of an ordinary antiferromag-
net: such phenomena as the anomaly in the specific heat
at some T~, the kinks in the temperature dependence of
the magnetic susceptibility, and the spin-flop (and spin-
flip) transitions in the applied magnetic field would be
seen at any magnetic ordering. Quadrupole-type order-
ing may be seen by neutrons via magnetoelastic coupling,
but distortions will be small. All this makes the issue of
experimental identification of the new type of ordering a
difBcult problem.

The neutron scattering remains one of the most pow-
erful methods of identification of the magnetic order.
Elastic neutron experiments measure directly the aver-
age sublattice magnetizations, (S'), i.e. , the average local
spins in magnets. This method, however, fails for an un-
conventional magnetic order, where (S') identically van-
ishes (like in the spin nematics) or is small (the triple-spin
correlators), so that the leading order parameter is differ-
ent. To obtain the dependence of the neutron scattering
cross section on spin S in a higher power, one needs to
go beyond the Born approximation in the scattering am-
plitude. These corrections, while seen experimentally for
the critical scattering in ordinary ferromagnets [8], are
very small. Therefore, we discuss below another way to
identify the nontrivial magnetic order —the neutron elas-
tic scattering measurements in an applied external mag-
netic field.

It is well known that the magnetic part of the Born
scattering amplitude has the form

fq = roq) F(q)e'~ '
~

6 p
— —

) S a~,
q

where q = p —p', p and p' are the initial and the final
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where in the Matsubara representation

(2)

Tik )

momenta of the neutron, r0 is the classical electron ra-
dius, p is the gyrornagnetic ratio of the neutron, o/2 is
its spin, S~ is the spin of the atom at the point R~, and
F(q) is the form factor of the atom.

Thus, the Born cross section for the elastic Bragg scat-
tering is determined by (S~), the average local mag-
netization. The latter, however, depends explicitly on
the double- and triple-spin correlators (we assume below
(S')o = o):

amples are given below). The spin tensors T in Eq. (4)
show up in the time-dependent correlators in Eqs. (2)
and (3). To be more specific, we discuss below only the
pair and triple-spin correlators

K.'b(r) = (T[S.'(r) Sb (o) —s~*"S'(r)Sb(o)])

K'b", (ri, rg) = (T S'(ri)Sb(r2)S,"(0) ).
According to Eq. (4), below the transition point, T~, one
can write

K~b(r) = ) Tp"C&(r;r~, r —rb),
P

(6)
K b (rl, r2) = ) Tp C'g(rl, r2', ra, ra —rb, ra rc).ipk ~ ipk P

/3

P P (3)
T,

'"" = ) dri dr2(T(S' (ri) Sb"(r2)S,"(0)H,
b 0 0

(l, a, b) are the lattice indices and (i, p, k) are the spin in-
dices. Tj can be different for the different sublattices. We
shall see that Eq. (2) provides a sizable effect already in
moderate magnetic fields. Unfortunately, much stronger
magnetic fields are needed to check the magnetic sym-
metry in the high-T, oxides.

Nontrivial spin arrangements are known to exist in
the microscopic localized spin models with S ) 1 [9]
(quadrupole spin arrangements). There were also nu-
merous attempts to describe the exotic magnetic ground
states microscopically in terms of the Hubbard or t-J
model using the mean field approach or 1/N expansion
[10, 11]. However, a phenomenological approach may be
taken instead, which would be applicable for any system
where the Neel state is unfavorable. We shall now sum-
marize this approach in brief.

Independently of specific approximations any of these
new ground states should manifest a breaking of the spin
symmetry. Any breaking of the rotational spin group (in
the exchange approximation), in its turn, can be classified
near T~ by introducing average multiple-spin correlators
in the form [7, 12]

(S'(ri)S"(rz) S (r )) = ) T~p C' (ri, rz, . . .",r„),
p

(4)
where n is a representation of the spatial lattice group
in the paramagnetic phase, so that C (ri, rz, . . . , r„)
transforms according to this representation, while the n-
rank spin tensors, T'~&"'~, describe the spontaneous break-
ing of the spin rotational symmetry. For n=2 this is an
obvious generalization of the local (on site) quadrupole
averages and is applicable for any spin value. If n is even,
the time-reversal symmetry remains preserved, while at
any odd n the time-reversal symmetry is broken. The
symmetry in the spin space is lowered and varies depend-
ing on the specific form for the tensor T in Eq. (4) (ex-

As mentioned above, C~ are responsible for the space
symmetry of the order parameter. In most cases of inter-
est the magnetic order involves two sublattices, so that
CP(7.i „ i, ri „) in Eq. (6) have to be of the form

exp[iQ (ri + rz + + r„)/n]C&(ri „ i, ri „),
(7)

where Q is the sublattice wave vector [for instance,
Q = (vr, vr) for the Cu02 planes in the high-T, oxides] and

C'&(ri . „ i, ri „)realize an irreducible representation of
the small group of vector Q. Of course, the explicit form
for functions CP& (i.e. , their space and time dependence)
in (4) or (7) is not known except in the model calcula-
tions. Nevertheless, the basic conclusion from Eqs. (2)
and (3) is that the two sublattices acquire different mag-
netic moments in the applied magnetic field seen as the
Bragg peaks by neutrons. According to Eqs. (2) and (3)
one has

T,'"=) Tp C ( =0;,q=0),
P

ipk ipk PTi" ——) Tp" @c (u)i, u)2 = 0; ri, qi, q2 ——0),
P

where we have introduced the Fourier components for
the basis functions of Eq. (6). Here P enumerates the
basis functions of the irreducible representation with the
vector Q = (vr, vr). As usual, the orientation of the spin
tensor is fixed by some magnetic anisotropy.

(i) The nonpolarized elastic neutron cross section The.
new peaks. —The purely magnetic contribution into elas-
tic neutron cross section can be expressed in the following
way [13]:

dA V0
= roN ) 6(k —q) exp( —2W(q))~FM(q) ~

x(1 —(q q) ),
Here FM(q) is the magnetic unit-cell structure factor

defined by
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FM(q) = ) .—g~(S~)HFa(q)&~e" ". (10)

A~ is either +1 or —1 according to whether the spin at
cite d is on the "plus" or "minus" sublattice, q and g
are the unit vectors following the direction of q and L,
where L = (Si)H —(Sq)H and (Si)H, (S2)H are the
Geld-induced spin averages on the two sublattices. The
average is taken over the orientations of rl, exp( —2W(q) )
stands for the Debye-Wailer factor.

One sees that the cross section in the new purely mag-
netic Bragg peaks is determined by the square of the dif-
ference of the sublattice magnetizations, L . Therefore,
by comparing Eqs. (4) and (8), one would expect that
the intensities of the Bragg peaks are (2plsH/T~) times
weaker for the spin nematics than those in the antifer-
romagnets and (2p~H/T~) times weaker for the triple-
spin correlator systems. So, the effect should be seen on
the scale of the magnetic fields of the order of

~o = (11)
2pg

While for (LaSr)2Cu04, this estimate would give us
200 T, which is unrealistic as we mentioned above,

this is only 10 T for URu2Siq. The intensities of the
new Bragg peaks are proportional to (H/Ho)2 for the
spin nematics and (H/Ho)4 for the triple-spin correlator
systems.

(ii) The symmetry of the spin correlators. Accordi—ng
to Eqs. (3) and (8), only the totally symmetric tensors
T'" and T'"" for the double- and triple-spin correlators
could be seen by the elastic neutron scattering. There-

fore, the so-called "p-nematic" T'" = e™P~[7] and the
chiral spin state T'I'k = e'"" [ll, 12], if present in the spin
system, must be detected by some other means [2].

For the symmetric two-spin correlators (spin nemat-
ics or quadrupole order) the classification of all possible
symmetry groups has been done in [14] and it was shown
that quite a rich variety of different possibilities exist
even for a simple tetragonal structure. Some triple-spin
correlator symmetries were considered in [5].

To demonstrate the versatility of the neutron ap-
proach, as described above, we consider only a few ex-
amples. (a) For the n-type spin nematic [7], where T'" =
(n, nk —

s b'") (the uniaxial symmetry, n—the unit vec-
tor) the spin polarization, L, is proportional to

L' oc n'(n H) ——' H' . (12)

(b) For the so-called (u, v) nematic [14),

L' = u'(v H) + v'(u H), (13)
where u i v are the two mutually perpendicular unit
vectors. (c) The triple-spin correlator order parameter
can be generally expressed through three independent
vectors in the following way [5]:

Tiyk = ) [
i~ck —2 (b c)(Pic k + Pik P + beak i)]

(14)

Here the summation is taken over all possible permuta-
tions of (a, b, c) at fixed indices (ipk). Again, the ap-
plied external magnetic field induces magnetizations on
different sublattices, so that their difference has now the
following form:

(15)L' = T'""H&Hk = ) [a'((b H)(c H) —
s (b c)H j —

& (b c)(a H)H'] .
P

Consider for example the two triple correlator phases studied in [5]. The first phase is uniaxial with a = b = c = n
in Eq. (14). In the second phase a J b J c. For these two phases one has, correspondingly,

L~'i = n'[(H n) —si H ]
—

s2 (H n)H',

L~ l = a'(b H)(c H) +b'(a H)(c. H) +c'(a. H)(b H) .

All the above phases are, therefore, experimentally dis-
tinguishable by their different angle dependence on the
orientation of the applied magnetic field. It was, of
course, assumed that the directions of n in Eq. (12),
(u, v) in Eq. (13), or (a, b, c) in Eq. (15) are somehow
fixed with respect to the lattice axes by the magnetic
anisotropy, so that the magnetic field is below its "spin-
flop" value.

(iii) The scattering of the polarized neutron beam.—Similar information about the symmetry of the spin
tensor may be obtained from the polarization measure-
ments on the scattered beam. The polarization of the
scattered beam is given by the formula

PP&@gs 2Lg (Po ' Lg) PP Lg
P LJ

where Po is the polarization of the oncoming neutron
beam. Now L~ is the projection of the difference of the
sublattice magnetizations into the plane perpendicular
to the scattering vector. The dependence of L on the
direction of the magnetic field is different for the n-type
uniaxial spin nematic and the uiv symmetric spin ne-
matic, as we have just seen, and this allows us to dis-
tinguish between these two types of symmetric spin ne-
matics. The same is true for both symmetric triple-spin
correlator phases.

(iv) The nuclear-magnetic Bragg peaks intensities.—To determine L, one might find it possible to measure
the nuclear-magnetic neutron peaks by polarized neu-
trons. The intensities of those will be given by the same
formulas as for conventional magnets, but are now only
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(H/Ho) times weaker for the spin nematics and (H/Ho) 2

times weaker for the triple spin correlator order parame-
ter.

(v) The inelastic scattering. —The inelastic neutron
measurements on spin nematics should see the low ly-
ing spin wave spectrum that is not necessarily symmetric
near the I' and X' points [7]. Of course, the spin wave
spectrum should also be seen for the triple-spin correlator
phases.

The anomalous ordering can exist in many substances.
On the other hand, if the phenomena like an onset of
the anisotropy in the temperature dependence of the bulk
susceptibility or a spin-Hip transition are observed in a
material, but no spontaneous magnetization is seen by
neutrons, this would again indicate that below this on-
set temperature a novel non-Neel state develops. This
could be the case, for instance, in URu2Si2. In principle,
in addition to the case of URu2Si2 or UPts, this corn-
ment could be important in the high-T, oxides, where a
magnetic transition may appear at T~ 200 K, but the
method proposed would be not applicable for the realistic
values of the magnetic field.

In conclusion, if T~ is low enough, the method pro-
vides a simple way to determine whether the given struc-
ture is an unconventional magnet or not: in a large
enough applied magnetic field the new Bragg peaks ap-
pear due to the sublattice magnetization, which is pro-
portional to H/He for spin nematics and to (H/Ho) for
the triple-spin correlators. Only symmetric (see above)
tensor phases can be seen in this approach. However,
at least in principle, since the overall symmetry of the
spin scalars may change in higher orders (see [14]), this
can be noticed by the study of the magnetic scattering
anisotropy with respect to the applied magnetic field for
the Bragg peaks with Q = 0. It is also worth mentioning
that there could exist magnetic systems where, in gen-
eral, similar magnetic states could develop for the wave
vector Q = 0. Most of the above considerations would
be applicable as concerns the anisotropy of the magnetic
peak intensity on the direction of applied magnetic field
for this case as well. The estimates obtained are quite
general, because they are based upon a phenomenologi-
cal analysis of the order parameters.
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