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Energy Loss Rate of Hot Electrons in a Semiconductor:
The Role of Anharmonic Interactions
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The hot-electron energy loss rate (ELR) is studied by using the nonequilibrium Green s function
approach. The eÃect due to the anharmonic interaction is considered. As a result, hot electrons
lose their energy primarily by creating pairs of acoustic phonons via LO phonons. When acoustic
phonons are kept at the lattice temperature, the nonequilibrium distribution for LO phonons is
derived. by imposing the steady state condition. We show that our result is able to account for the
dramatic enhancement of the hot-electron ELR observed in GaAs/GaAlAs semiconductors at low
temperatures.

PACS numbers: 72.10.Di, 63.20.Hp, 63.20.1 s, 72.20.Ht

During recent years intensive experimental [1—7] and
theoretical [8—14] efforts have been devoted to the under-
standing of the hot electron energy loss rate (ELR) in
semiconductors. In the hot-electron energy loss experi-
ments, electrons are heated by an external field. With
strong electron-electron interaction, electrons equilibrate
among themselves at the temperature T@ before giv-
ing off energy to phonon systems. It is believed [1—14]
that in semiconductors such as GaAs/GaA1As, electrons
lose energy mainly by emitting longitudinal optical (LO)
phonons through the Frohlich interaction for T~ & 50 K,
and by acoustic phonons through the deformation poten-
tial interaction below T@ ( 15 K.

The ELB. for hot electrons was first calculated by Ko-
gan [8] to describe the energy transfer from hot electrons
to LO phonons by employing the second order pertur-
bation theory. It was also studied by Lei and Ting [9]
using the Green's function method for hot electrons un-
der a strong electric field. Kogan's formula was modi-
fied later by a number of authors [10] to account for the
hot-optical-phonon effect by introducing a phenomeno-
logical finite energy transfer rate from LO phonons to
acoustic phonons. It has been well known that these
modified formulas are not able to explain the dramatic
enhancement of the ELR observed in the experiment of
Shah et at. [4] at low temperatures. In several subse-
quent publications, Das Sarma and co-workers [11] inves-
tigated this problem by simply renormalizing the optical
phonon Green's function with electron-phonon interac-
tions. The renormalized LO phonon spectrum consists

H = ) E„etc„+—) v(q) ptpq+ ) iog ataq+
p q

of the low lying electron-hole-like and plasmonlike exci-
tations. By assuming that these electron-hole-like and
plasmonlike excitations are kept at the lattice tempera-
ture Tl„they found that their ELR [11] exhibits orders
of magnitude enhancement at low temperatures over that
given by Kogan's formula. However, as Dharma-wardana
[12] pointed out recently, the particle-hole-like and plas-
monlike excitations exhibited in the LO phonon spectrum
of Ref. [11] should be at the electron temperature T@
instead of the lattice temperature Tg. When this correc-
tion has been taken care of, the enhancement of ELR at
low temperatures disappears. Therefore, the underlying
physical reason for the low-temperature enhancement of
ELR [4] is still unsettled.

In the following, we shall use the nonequilibrium
Green's function approach [15] to study the low-temper-
ature enhancement of ELR. In our model, electrons are
interacting with each other and are kept at the electron
temperature T@, electrons and LO phonons are coupled
by the Frohlich interaction, and LO phonons can de-
cay into acoustic phonon pairs through the anharmonic
interaction. Acoustic phonons are maintained at the
lattice temperature or the heat bath temperature Tg.
The distribution function for LO phonons will be de-
termined self-consistently from the energy rate balance
equation. By choosing the appropriate anharmonic in-
teraction strength, we show that our results agree quan-
titatively with the experimental ELR of Ref. [4] on
GaAs/GaA1As quantum wells, especially at low temper-
atures.

The Hamiltonian for our system can be written as

) wqi, bt ~bq i + ) [M(q) pt Aq + M*(q) pqAt]
qA q

+— ) [V(q, q, q —q, A, A ) AqBt, &Bt, & + V (q, q, q —q, A, A ) AtBq i, Bq q p ] .
q/ gl /If

Here pq = Q„c„+qc„denotesthe electron density operator. Aq = aq+a q
and Bq i, = bq, &+b & are the operators for

LO phonons and acoustic phonons, respectively. uqp = c»q and col. are the phonon dispersions for acoustic phonons
(LA and TA) and LO phonons. A labels the polarization of the acoustic phonons. v(q) = ez/e~qz is the Coulomb
interaction between electrons. The Frohlich interaction matrix element

~ M(q) ~

= zv(q)ul, (1 —e~/eo) is written in
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terms of v(q), ul. , and e~ and ep, the dielectric con-
stants at high and low frequencies. V is the anharmonic
phonon-phonon interaction matrix element involving one
LO phonon and two acoustic phonons. Other types of an-
harmonic interactions describing the collisions among LO
phonons are treated phenomenologically in the present
work. The direct couplings between electrons and acous-
tic phonons are neglected, because they do not contribute
to ELR except for T~ ( 15 K.

By using the nonequilibrium Green s function ap-
proach [15] and renormalizing the LO phonon Green's
function with the electron-phonon interaction [11] and
the anharmonic interaction in the random phase approx-
imation (RPA), we have derived the hot-electron (at T~)
energy loss rate (RL, ) per electron, and the acoustic-
phonon (at Tl, ) energy gain rate (RG) per electron, re-
spectively, as

+ b Xp

FIG. 1. Feynman diagrams for LO phonon Green's func-
tion and LO phonon self-energy. Here single and double
wavy lines represent the "bare" IDp(q, u)] and renormalized
[D(q, u)] LO phonon Green's functions, respectively. LO
phonon self-energy m (q, u) consists of contribution

I M(q) I

xg(q, ur) from the Coulomb correlated electron-hole bubble
and g„(q,ur) from the bubble made up by a pair of acoustic
phonons (dashed lines).

(des/x) cu I'g (q, w) ( —Im Dp(q, (u) [n~(w) —n(q, (u)]

+
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+
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Here N, is the total electron number. n~ and nl. are the
Bose factors at the temperatures T~ and TI., respectively.
n(q, w) is the distribution function for LO phonons, to
be determined by the steady state condition. Dp(q, w)
is the retarded Green's function for "bare" LO phonons
and vr(q, cu) is the total LO phonon self-energy,

vr(q, (u) =
I M(q) I2 y(q, ~) + y„(q,~) .

The phonon self-energy contains the contribution
IM(q) I2y(q, ~) from the electron-phonon interaction
and the contribution y„(q,u) from the anharmonic
phonon-phonon interactions. Feynman diagrams for
these self-energy contributions are sketched in Fig. 1.
Here y(q, ~) is the retarded electron density-density
response function. In the random phase approxima-
tion, it is given by yp(q, u)/[1 —v(q)yp(q, ~)], where

yp(q, w) is the value for free electron gas. I'q(q, w)
and I'2(q, w) are related to the imaginary part of the
phonon self-energy by I'q(q, u) = —2ImIM(q)I2y(q, ~)
and I'2 (q, cu) = —2 Imp„(q,~).

From the expression of the hot-electron ELR in Eq. (2),
we can easily conclude that hot electrons lose their ex-
cessive energy in the form of electron-hole pairs and
plasmons, which is represented by I'q(q, u), in two dis-
tinctive ways: (i) by directly exciting bare LO phonons
[ImDp(q, ~)] and (ii) by indirectly emitting pairs of
acoustic phonons [I'2(q, cu)] via the renormalized LO
phonons. It should be pointed out that if ImDp(q, u)
were treated as a b function, channel (i) could be com-
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pletely blocked by the presence of the self-energy term
vr(q, ~) in Il —Dp(q, u)7r(q, cu)I, i.e. , the first term in
Eq. (2) would vanish. Finite contribution to ELR ean
still be obtained from channel (i), either by broaden-
ing ImDp(q, cu) phenomenologically with a collision rate
1/~„„dueto anharmonic interactions other than that
given by Eq. (1) or by neglecting 7r(q, u) in Eq. (2)
which would correspond to the result of second order per-
turbation theory [8] if the LO phonon temperature is set
at Tl.. With 1/~„„in presence, we find that channel (i)
is open but still suffers the "hot phonon" effect due to
a bottleneck in this electron energy loss channel. This
effect has been included here through the LO phonon
distribution function n(q, w). On the other hand, chan-
nel (ii) [the second term in Eq. (2)] does not suffer from
any "hot phonon" effect as long as acoustic phonons are
maintained at TI, . The first and second terms in Eq. (3),
respectively, represent the energy gain rates of acoustic
phonons directly from the bare LO phonons and indi-
rectly from electrons via the renormalized LO phonons.

In the steady state, n(q, w) is determined by imposing
the steady state condition, namely, RL, ,t ——RL, ——BG..
This is to say that the ELR from electrons to optical
phonons must be identical to that from optical phonons
to acoustic phonons. Hence, the steady state LO phonon
distribution is found to be

I'q (q, w) n@(u) + I's(q, w) nl, (u)
I'g (q, ~) + I'2 (q, (u)
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The steady state RL s2 can be written succinctly as fol-
lows:

and D is the renormalized LO phonon Green's function

1
RL, ,2

—— ) dcd cd I'(q, cd) [
—Im D(q, cd)/2r)N, o

D(q, cd) =
cd —cdL —2cdL7r(q) cd) + 2cdL/7»

(8)

x [n~(cd) —nL(cd)] .

Here I' is given by

I'i(q, cd) I'z(q, cd)

I'i(q, cd) + I'z(q, cd)
'

(6)
The contribution to the LO phonon self-energy

y„(q,cd) to the lowest order in the anharmonic interac-
tion, according to Fig. 1, can be shown to have the fol-
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q', A', A"

[ ~ V(q, q', q q', A'—, A")
~

+V(q, q', q —q', A', A") V*(q, q —q', q', A", A') ]

2cdq', A' nL (cdq —q', A" )
(Cd —

Cdq q), P)) + 2b) —Cd, &,

2cdq ), [1+nL(cdq q ), )]+ 2 2
(Cd + Cdq q) p«+ 2b)

2cdq q))A nL(cdq )A ) 2cdq q) g)) [1 + nL(cdq) p))]
(cd + cdq, P + ib) z —cd~, ~„(cd—cdq g + ib') z —cdz, , ~„

The following anharmonic interaction matrix element [16]

2p ul Wq ~ill uq —quip»

&sA'
(10)

(12)
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will be adopted for the numerical calculation. Here p is the Griineisen parameter, describing the strength of the
anharmonic phonon-phonon interaction. M is the mass per unit cell. c,g is the acoustic phonon sound speed. N is
the number of unit cells. We note that a more realistic anharmonic interaction model could be employed for ELR
calculation. But the present choice renders ELR calculation more manageable, while retaining the essential physics
of hot-electron relaxation in semiconductors.

The expression for the LO phonon self-energy y„(q,cd) is simplified by introducing the F function,

2M
F(q, cd, A') = ) cdq p [1+2n(cdq ), )] (ll)

Cd + Cdq) p) + 2b —Cd
q q q )

When y„(q,cd) is written in terms of the F function, it becomes

y„(q,cd) = 8p cdL ) [F(q, cd+ 2b, A') + F(q) —cd —2b, A')] .
sA'

In deriving the above equation, we have used the symmet-
ric properties of the phonon-phonon interaction matrix interaction. The phonon self-energy due to the electron-
element in q', A' and q —q', A". For the Debye model, all phonon interaction has been studied in Refs. [11] and
the F functions with difFerent A are related. This is be- [12]. It is known that Imp(q, cd) has peaks at the plas-
cause difFerent acoustic phonons can be scaled into each mon and electron-hole excitations.
other (cdL~ = csiq and cd~~ = es2q for q ( qLi). The hot-electron ELR (= RL s2) can be calculated ac-

We have studied the LO phonon self-energy g&(q, cd) cording to Eq. (6) or Eqs. (2) and (5). Since 1/q» cor-
and

~
M(q) ~~ y(q, cd) for semiconductor GaAs/GaA1As. responds to the collision rate among LO phonons which

For the sake of simplifying the numerical calculation, is originated from the anharmonic interaction other than
the wide quantum well [4] made up by GaAs/GaA1As that given by Eq. (1), such a collision process usually
semiconductors has been approximated as a three- involves the excitation of several LO phonons and thus
dimensional system. The parameters employed here cor- needs much higher energy to accomplish. At low tem-
respond to those of GaAs and they are tabulated in Table perature we expect 1/q» —0. Under this condition,
I. The Gruneisen parameter is known to be of order unity we need only to consider the process in which the exces-
(s 1) for most solids [17]. In the hot-electron energy sive energies of the hot electrons in the form of electron-
loss experiment [4], the lattice temperature TL = 1.8 hole pairs and plasmons [I'i(q, cd)] are lost to create pairs
K is much smaller compared to the Debye temperature. of acoustic phonons via the renormalized LO phonons
Therefore, the lattice temperature will be set to zero in as the intermediate states. I q(q, cd) corresponds to the
our numerical computation. We find that Imp„exhibits spectrum for a pair of acoustic phonons whose exeita-
maxima at 2a~D ( ag and 2~1.~ ) ~1., together with tion energy varies continuously from zero up to 2m~~
some low lying excitations created by the anharmonic and 2~1.&. The presence of these low energy excitations
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TABLE I. Table for parameters used in the numerical cal-
culations (ao ——e h /m'e ).

0.04

CsL

10.91

5.29 x 10 m/s

37.0 meV

14.75 meV

0.067m.

15.4 rneV

Cp

Cst

kF ao

12.91

2.48 x 10 m/s

31.45 meV

135M„
1.5 x 10 cm

1.41

0.03

0.02

0.01

0.00 I I 1 I I I

ip —15 gp
—14 $0—13 $0—12 ] Q

—11 ] p
—10 ]0—9 $0—8

in I'q(q, u), where hot electrons transfer their energy, to-
gether with the renormalized LO phonons as the inter-
mediate states [I D(q, u) I ] which show strong resonances
or peaks near ~I, and plasmon frequency u„,is essential
for the enhancement of ELR at low temperatures. Now
we present our numerical results for p = 0.2, 0.5, and 1.0
in Fig. 2, together with the experimental data of Ref.
[4]. By choosing the appropriate anharmonic interaction
strength such as p 0.5, we find that our theoretical
calculation can Gt the experimental measurement quan-
titatively over a wide temperature range. It should be
noted that p 0.5 is reasonable because most of the
solids are found to have Gruneisen parameters of order
of unity [17].

Finally we wish to emphasize again that in our energy
loss channel, the energy is always transferred from the
electron system I'r (q, u) (at T@) to create pairs of acous-
tic phonons I'2(q, w) (at Tr.). On the other hand the
energy loss channel of Ref. [11], in which the energy is
transferred from the electron system to create particle-
hole and plasmonlike excitations I'r(q, w) (assumed at
Tr, ) in the coupled optical modes, is completely absent
from our approach. In this aspect, our conclusion is con-
sistent with that of Dharma-wardana [12]. In a recent
Comment [13] on Ref. [12], Das Sarma and Korenman
tried to argue that their energy loss mechanism is still
valid if the anharmonic collision time w due to the de-
cay of a LO phonon into acoustic phonons is set to zero.
A close examination shows that such an argument is not
self-consistent because they considered only the effect of
w (~ 0) on the distribution function of LO phonons,
but completely neglected the 1/~ (~ oo) term in the
dressed LO phonon propagator. For example, the result
of Ref. [13] can never be achieved from Eq. (6) if I'2(q, ur)

[=Imp„(q,u) = 1/7.] is set to be infinitely large.
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