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First-Principles Calculations of Self-Diffusion Constants in Silicon
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We report the first parameter-free calculations of self-diffusion constants in silicon. We have comput-
ed diffusion constants for the defect-mediated mechanisms using the local-density approximation in com-
bination with ab initio molecular-dynamics simulations and obtained the diffusion constant for the con-
certed exchange mechanism from earlier results by Pandey and Kaxiras. We obtain diffusion constants
in the range of the experimental values, with the self-interstitial mechanism dominating over the contri-
bution of the other mechanisms.

PACS numbers: 66.30.Hs, 61.72.3i

Self-diffusion in silicon has been the subject of intense
debate for several decades. Experimental data [1-4] ex-
hibit an Arrhenius behavior

D(T) =Doexp( —Qlktt T),
with an activation energy Q in the range 4-5 eV and a
preexponential Do that is much larger than typical values
for metals. For many years, the debate focused on
whether self-diAusion is mediated primarily or exclusively
by vacancies (V) or self-interstitials (I). More recently,
the concerted exchange mechanism (X) has been sug-
gested as a new contender [5]; experimentally it has not
been possible to determine unambiguously the relative
importance of the various mechanisms. Theory [5-7] has
focused so far on predicting the activation energies Q for
the various mechanisms. More recently, the entropy of
diffusion, the key quantity in Do, has been calculated for
the exchange mechanism [8]. For an unambiguous
theoretical determination of the relative importance of
the competing mechanisms, however, one has to calculate
the complete self-diffusion constants for all of them.

In this paper, we determine for the first time the self-
diffusion constants of the two defect-mediated mecha-
nisms from parameter-free, state-of-the-art total-energy
calculations. We bring to bear the full power of the
Car-Parrinello technique [9], which allows the accurate
determination of lattice rearrangements of the point de-
fects and the monitoring of their diffusive motion in real
time. The diAusion constant for the exchange mechanism
can be determined directly from the activation energy
and diffusion entropy calculated earlier by Pandey and
Kaxiras [8]. We find that the interstitial-mediated mech-
anism dominates self-diffusion close to the melting point
of silicon. The diffusion constant of the vacancy mecha-
nism is approximately 3 orders of magnitude smaller and
that of the exchange mechanism is 4 orders of magnitude
smaller.

The diAusion constants of the defect-mediated mecha-

Ef —TSyC(T) =C, exp
kgT

(3)

The formation energy Ef is the energy required to create
a native defect, and the formation entropy Sf is related to
the phase space volume accessible to the defect.

We have calculated energies, entropies, and diAusivi-
ties using the density-functional theory in the local-
density approximation [10,11], which is the most com-
mon framework for state-of-the-art electronic structure
calculations. We employ first-principles norm-conserving
pseudopotentials [12] together with the Car-Parrinello
[9] method, which allows us to determine fully relaxed
defect structures and to simulate the dynamics of the de-
fect migration [13]. All calculations have been done with
the defects in their neutral charge state and in a constant
volume ensemble. Preliminary results have been reported
i n a con fe rene e proceed in gs [14].

Calculation offormation energies The formation .—en-
ergies of the native defects have been calculated previous-
ly by several authors. However, the values they obtained
show a wide spread from 3.5 to 4.0 eV for the vacancy.
We have recalculated these values using larger supercells
and a more rigorous treatment of atomic relaxations than

nisms, Dh and Dl, can be decomposed into a product of
the concentration of native defects (Ct and Ct ) that are
available for self-diffusion, normalized by the concentra-
tion of lattice sites C„and the diA'usivities (dt and dt ) of
silicon atoms in the presence of one such native defect,
which are a measure of the speed of diffusion. The total
diffusion constant D arising from all three mechanisms is

Ch Cv
dk+ dv+ Dx (2)

C, C,

where C, =5 & 10 cm is the concentration of lattice
sites in the silicon crystal and Dz denotes the diAusion
constant for the exchange mechanism. The concentration
of a native defect can be written as
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previously possible. Furthermore, we calculate the for-
mation energies here for both interstitials and vacancies
with exactly the same level of accuracy.

In order to obtain the formation energies of the native
defects, we first determined their structure. This has
been done by minimizing the total energy with respect to
all atomic coordinates. I n order to assure that the
minimum energy has been found, we quenched the sys-
tem several times during a molecular-dynamics run at a
temperature close to the melting point of silicon. The
structure of the vacancy is well understood [15,16]. In
the neutral charge state it undergoes a Jahn-Teller distor-
tion by forming two pairs out of the four dangling bonds
of the vacancy. The self-interstitial has a more compli-
cated structure [6]: a pair of silicon atoms, oriented in

the (110) direction, that occupies a single lattice site. We
found zero temperature formation energies Ff of 3.3 eV
for the self-interstitial and of 4. 1 eV for the vacancy [17].

Calculation of formation entropies The .—entropy of
formation is the sum of the configurational entropy and
the vibrational entropy. The configurational entropy fol-
lows from simple geometrical arguments: It is related to
the number of ways in which the native defect can be in-
corporated at one particular lattice site. There are three
possible arrangements for the vacancy and six for the
self-interstitial, resulting in configurational entropies of
1.1k' and 1.8k', respectively.

More diScult to calculate, and obtained here for the
first time, are the vibrational entropies for the two native
defects in silicon. The vibrational entropy is a measure of
how tightly the native defect is constrained in its equilib-
rium structure. We have calculated the vibrational entro-

py in the so-called local harmonic approximation that has
been suggested and tested recently by Najafabadi, LeSar,
and Srolovitz [18]. This approximation allows one to cal-
culate the entropy as a sum of local (atomic) contribu-
tions. Each local contribution is obtained from the curva-
ture of the total energy as a function of the position of a
single atom, while the positions of the remaining atoms
are kept unchanged. The curvature of the total energy is
obtained from twelve distortions for each atom along a
starburst mesh. We have included three shells of lattice
sites surrounding the defect. We find that the contribu-
tion from the local entropies is already converged beyond
the second neighbor shell. The vibrational entropies are
distributed over a large number of atoms. For the vacan-
cy the first four atoms forming the first shell contribute
0.68k' each; the second shell (twelve atoms) contributes
1.12k'. Similarly, the two atoms forming the split inter-
stitial contribute 0.88k~ each. The first, second, and
third nearest neighbor shells contribute 1.4k~, 0.56k~
and 0.18kB, respectively.

The total entropies of formation, including configura-
tional and vibrational parts, are 6k~ for the self-
interstitial and 5k' for the vacancy. The resulting con-
centrations amount to 10 ' —10 ' self-interstitials and

10 —10 vacancies per cm at 1000'C. Even at the melt-
ing point we find vacancies about 3 orders of magnitude
less frequently than self-interstitials.

Calculation of the diffusit. ities .—The last unknown is
the diffusivity of silicon atoms in the presence of one na-
tive defect. Diffusivities can also be broken up into ener-
gy and entropy contributions. However, because of the
complicated structure of the native defects, in particular
that of the self-interstitial, we have used the most un-
biased approach possible, namely, a direct simulation of
the atomic motion via molecular dynamics.

Even though the concentration of defects in our super-
cell calculation is very high, our simulation corresponds
to that of isolated defects. Since in our calculation neigh-
boring defects are correlated by periodic boundary condi-
tions, they have a minimum distance of about 10 A. At
this distance interactions between the periodic images are
small so that the motion of isolated defects is observed.
During the simulation, the temperature was held constant
by a Nose thermostat [19]. We have used temperatures
of 1500 K for the self-interstitial and of 1200, 1400, and
1600 K for the vacancy. After su%cient equilibration of
each sample at these temperatures, we have performed
simulations up to 20 psec, which corresponds to about
350 phonon oscillations.

In order to obtain the diA'usivities dl, dy, we monitored
the mean square displacement of all atoms in the cell and
evaluated

w IR;(t) —R;(0) Id =—lim
i=l (4)

where R; (t) is the position of the ith atom at time r. It is
noteworthy that the diAusivities of the vacancy and the
self-interstitial lie in a very similar range. Their magni-
tudes are of the order of 10 cm /sec at the tempera-
tures we have investigated. The calculated diAusivity of
the interstitial is consistent with experiments by Gri%n et
al. who have established a lower bound between 10
and 10 cm /sec at 1500 K [20].

The diA'usion process for both the vacancy and the in-
terstitial mechanism typically displaces a different atom
with each jump, resulting in reasonable statistics even
after short simulation times. The statistical error of the
diAusivities aA'ects the diAusion constants by less than a
factor of 2 and thus is negligible compared to the uncer-
tainty introduced by the free energy of formation. The
error bars quoted here take dynamically correlated events
observed in the simulations into account.

We have not attempted to extract the energy of migra-
tion from simulations at diA'erent temperatures. Because
of the exponential decrease of the jump frequency with
decreasing temperature, such calculations are feasible
only in a small high-temperature region. As a result the
error bars in the migration energy would be nearly as
large as the calculated values themselves.

Self diffusion constants —-We combine conc.entrations
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and diffusivities and obtain the self-diffusion constants
shown in Fig. 1. Also shown are the diffusion constants
for the exchange mechanism obtained from the activation
energy (4.3 eV) and the entropy (3.3k') reported by
Pandey and Kaxiras [5,8,21]. The theoretical self-diffu-
sion coe%cients for the interstitial mechanism are in ex-
cellent agreement with experiment. We find that the
self-interstitial mechanism dominates self-diAusion at
high temperatures: The vacancy mechanism contributes
about 3 orders of magnitude less, while the exchange
mechanism contributes 4 orders of magnitude less than
the self-interstitial mechanism.

Oiscussion. —The difference of the self-diAusion con-
stants for the defect mechanisms is mainly due to the
diAerent formation energies. The entropies of formation
and the diffusivities of the defect-mediated mechanisms,
on the other hand, are very similar.

Our findings shed new light onto the so-called entropy
puzzle. It has been debated whether a simple defect
mechanism can explain the large entropy of diAusion,
which is of the order of 10k~. Starting with the pioneer-
ing work of Seeger and Chik [4], it has been suggested
that the defects responsible for diffusion at high tempera-
ture are extended over several lattice sites, forming disor-
dered zones with large formation entropies. A detailed
microscopic model, however, has not been provided. Our
findings show that the simple native defects have entro-
pies of formation of the order of 6k'. The diffusion en-

tropy also contains the entropy of migration. Our direct
simulations do not break the diffusivities into energies
and entropies. However, if we assume a migration energy
between 0.7 and 1.5 eV for the self-interstitial, both
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FIG. 1. Calculated self-diA'usion coeScients of the three
mechanisms contributing to self-difusion in silicon: the inter-
stitial (I), the vacancy (V), and the concerted exchange (X)
mechanism [21]. The experimental self-diffusion coe%cients,
which are the sum of all three contributions, are represented by
lines. The corresponding theoretical number will appear identi-
cal to that of the largest contribution (I), due to the orders-of-
magnitude separation between the individual contributions.

preexponential and exponential factors are in the range of
experimental results.

In contrast, the entropy of diAusion for the concerted
exchange mechanism, which only contains the entropy of
migration, is 3.3k&. Even though this may be a lower
bound, the defect mechanisms exhibit significantly higher
diffusion en tropics.

We have carried out an extensive analysis of the error
bars of our results. The largest contribution to the
diffusion constant is due to the formation energy. The
convergence of this quantity has been studied in most de-
tail. The greatest uncertainty comes from the k-point
sampling; as the number of k points is increased from 8

to 27, the formation energy changes by only 0.09 eV for
the self-interstitial and by 0.17 eV for the vacancy. The
plane wave convergence error of the formation energies is

less than 0.05 eV. Hence, we estimate the absolute con-
vergence error for the energy of formation to be of the or-
der of 0.2 eV or 5%.

It has not been possible to calculate diffusivities and
entropies with the most accurate k sampling, and hence a
larger relative error is anticipated for those quantities.
Entropies and diffusivities can be converted into energies
by Fq = —TS and Fd = —kgTln(d/do), where do=I v/6

is given by the bond distance l and the frequency v of the
optical phonon at I . Since the contributions of vibration-
al entropy and diffusivity to the free energy (at 1500 K)
are much smaller than the formation energy, we expect
only a small correction from these terms. Assuming an

uncertainty as high as 20%, we arrive at error bars for the
free energy of diAusion of 0. 1 eV from the vibrational en-

tropy and 0.07 eV from the diffusivity. The statistical er-
ror bar of the diffusivities is less than a factor of 2, which

translates into an error of 0.09 eV in the free energy of
diffusion.

The accuracy of the local harmonic approximation has
been tested by performing a fully anharmonic calculation
of the formation free energy of the vacancy [22]. At low

temperatures (500 K) we find good agreement within the
statistical error bars of the anharmonic calculation, which

proves the validity of the local harmonic approximation
for a material like silicon. At high temperatures (1000
K), however, anharmonicities increase the entropies by
(2~ 1 )k~ which affects the free energy by 0.26 eV.
Similar corrections are expected for the interstitial.

All calculations in this paper have been done for the
neutral defects in the electronic ground state. At finite

temperatures, excited states and diAerent charge states
are also present. The corresponding free energy contribu-
tion is

P OO

F = —kgT „d 6De( )1 e(1n+e " ),
where 6D(e) is the vacancy-induced electronic density of
states and p is the chemical potential, which is assumed
to lie at high temperatures in the middle of the gap. We
can estimate SD(e) from the experimental ionization en-
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ergies [23], when the small contributions that are buried
in the valence and conduction bands are neglected. It is
assumed that the positions of the energy levels relative to
the chemical potential do not change with temperature.
The resulting correction for the vacancy formation energy
is 0. 1 eV at 1500 K (compared to 0 K) and the correction
for the entropy is lka. The energy levels of the self-
interstitial are not known from experiment and are
dificult to establish from theory owing to limitations in

the size of the supercell. However, we estimate the elec-
tronic contribution to the formation entropy of the self-
interstitial to be less than that of the vacancy.

We estimate that the diA'usion constants may deviate
by approximately 2 or 3 orders of magnitude from our
calculated values. Most of the errors in our calculation
are of a systematic nature and they behave similarly for
both mechanisms. For this reason it is unlikely that they
will change the relative contributions of the diAusion
mechanisms despite the large error bars on the absolute
numbers.

In conclusion, we have calculated for the first time the
complete diAusion constants of the two native defect
mechanisms, which allows a quantitative comparison of
the three primary diAusion mechanisms that contribute to
self-diA usion. Our results and analysis suggests that
self-diAusion proceeds mainly by an interstitial-mediated
mechanism. Our entropies of formation provide a natural
explanation for the so-called entropy puzzle.
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