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Experimental Realization of Superelasticity near the Percolation Threshold
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An experimental determination of the superelastic exponent near the percolation threshold is present-
ed. This exponent s' characterizes the pseudodivergence of the elastic constants of a mixture of very soft
material (gel) and a rigid material (alumina and zirconia). From the measurement of the Young s

modulus, s' is found to be 0.67 0.05. This value is in agreement with previous numerical simulations in

3D, and this indicates that very likely s' is smaller than the superconductor exponent.

PACS numbers: 62.20.—x, 64.60.Ak

When one considers a mixture of two materials with

very different properties (like a conductor and an insula-

tor, a normal metal and a superconductor, a soft and a
rigid material, etc. ), one observes for a well defined pro-
portion of the two components a sharp transition between
two distinct states of the composite material. This is the
percolation phenomenon, for which, at a specific concen-
tration of one components, the transition occurs.

Depending on the problem, one measures a particular
property like the electrical conductivity or the elastic con-
stants. It is customary to express the variation of this

quantity as a power law ~p
—p, ~

—' where a is the critical
exponent appropriate to the chosen quantity. The nega-
tive sign indicates a divergence, such as in the conductivi-

ty of a normal metal superconductor mixture, where p
is the proportion of the superconductivity component,

p & p, . The positive sign indicates a drop to zero as

p pr.
In this paper, we consider the case of inclusions of a

perfectly rigid material (with infinite elastic constants)
inside a normally isotropic, elastic, host material. The
problem has already been studied theoretically by several
workers [1-4],but to the best of our knowledge there has
been no experimental realization. The elastic constants
of the composite diverge and it is usual to call the ex-

ponent of the divergence s'. It is the purpose of this work

to present an experimental determination of the exponent
s' in 3D.

The first numerical simulation in 2D was made by
Feng [1], who found an exponent s' slightly but signifi-

cantly lower than the exponent s of the divergence of the
conductivity in the normal-superconductor composite.
However, using a different model, Bergman [2] concluded
that s'=s. Milton [5] showed rigorously that s'~ s such

that the results of Feng and Bergman are both consistent
with the rigorous result. Limat [3] tried to give an argu-
ment in favor of the strict inequality but it is based on a
specific model and the general validity of his result is un-

clear. Recently Arbabi and Sahimi [4] performed nu-

merical simulations to determine s' in 2D and in 3D.
They found s'(2D) = 1.24 ~ 0.03 and s'(3D) =0.65
+ 0.03 to be compared with s(2D) =1.3 and s(3D)
=0.735. In 2D the difI'erence s' —s is small and thus it is

di%cult to be conclusive, but in 3D the two exponents s'

and s are clearly diferent.
Although the earlier conclusion seems well confirmed,

some of the models used in the simulations are not free
from objections (as first pointed out by Bergman [2]).
The homogeneous version of the models (i.e., without
infinitely rigid inclusions) used by Feng, Limat, and Ar-
babi and Sahimi present a very peculiar property. In
some particular directions, the lattice which models the
solid has a zero Poisson coefticient. This means that a
compression in these directions gives no deformation per-
pendicular to the compression. The model of Bergman
seems more realistic to describe a solid, in spite of the
claim of Limat [6] that all the 2D models are equivalent.
Thus, we think that an experimental study of this prob-
lem, the superelastic problem as it is sometimes called by
analogy with the superconductor problem, is worthwhile.

We require for this experiment two materials whose
elastic constants (bulk and shear modulus) differ by
several orders of magnitude, so that one is perfectly rigid
in comparison with the other. It is not possible to find
two such isotropic solids. Thus we use for the "normal"
elastic material a gel which has a small shear modulus
(It —10 dyn/cm ) and a bulk modulus K of order of 10'
dyn/cm . As a "perfectly rigid" material any hard solid
suffices as K and p are about 10' dyn/cm . The ratio of
the p is satisfactory for the present purpose (10 ), but
the ratio of the K is only 10 . We rely on the simula-
tions of Duering and Bergman [7] who studied in 2D a
similar case: a p ratio equal to 10 and a variable K ra-
tio (from 10 to 1). They found that the s' exponent of
the p divergence is practically independent of the K ratio.
In their study s' was taken equal to s =1.30, but the pre-
cision was too coarse to detect a small diA'erence from s.
Although Duering and Bergman worked in 2D, we think
that one can apply their results to our 3D system and
conclude that the exponent we find is really s'.

We choose as the host material polyacrylic acid gels
because they are very easy to prepare. We follow the
procedure indicated in Ref. [8]. The gels are prepared by
radical polymerization of acrylic acid in aqueous solution
and copolymerization by means of methylene bisacrylam-
ide. The two reactions take place together and are ini-
tiated by ammonium peroxysulfide. The sample is heated
up to 70 C for at least 6 h. We choose a concentration
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FIG. 1. Inverse of the Young's modulus F. ' vs the concen-
tration p of the filler (alumina powder). The line is a guide for
the eyes, like in the other figures.

of polymer of 10% and a content of cross-link which gives
a Young's modulus E =3p of about 10 dyn/cm . The
rigid materials used in the present study are alumina and
zirconia powders.

There are two major problems in preparing the sam-
ples: getting a distribution in the size of rigid clusters,
and avoiding sedimentation of the powders. There is a
large number of works concerning gels charged with
small particles (sizes from 1 to 10 pm) [9,10], but with
the exception of one recent paper [11) there is no mention
of a pseudodivergence of Young's modulus. In these
works, the gels are charged with monodisperse spherical
particles. The theoretical analysis [12] which agrees very
well with the experiments [9] assumes that the particles
are always isolated and do not form aggregates. We have
to stress that even in the case of aggregation of spherical
particles in clusters, it is not certain that such clusters
will be rigid because of the possibility of relative displace-
ment of the particles belonging to the same clusters under
application of an external stress. Thus we choose
powders with particles with diAerent sizes and poorly
defined shapes, alumina and zirconia powders used for
crystal polishing. Because of the crystalline nature of the
particles, their shape is very irregular, as was checked by
optical microscopy. Furthermore, the size distribution is
characterized by a maximum value of the sizes, 9 and 12
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FIG. 2. Variation of the Young's modulus with the composi-
tion for the samples of Fig. 1, in the vicinity of the percolation
threshold.

pm for two diAerent alumina powders and 12 pm for the
zirconia powder. In such conditions we expect formation
of rigid clusters, with diAerent sizes.

To solve the problem of sedimentation we proceed in

the following manner. We mix the acrylic acid with the
solvent (water), the cross-linking agent (methylene bisa-
crylamide), the catalyst, and the desired amount of
powder. The mixture is poured into a cell of radius 11
mm and length 30 mm. To avoid sedimentation, the cell
is rotated at a rate of 5 rpm during heating. To verify
that the samples are homogeneous, we cut a sample into
three thinner samples and measured their Young's mod-
uli. We found the same values, taking into account ex-
perimental uncertainties.

The Young's modulus is measured by imposing a
known deformation to the sample and determining the
pressure by means of a piezoelectric sensor. From the
linear region of the strain-stress curve, it is possible to de-
duced the Young's modulus.

In Fig. 1, we present the curve F ' as a function of p
for the case of two alumina powders. The value of the
threshold is near 0.5. The pseudodivergence of E is very
well seen in Fig. 2, where F. vs p is plotted for p larger
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than 0.29. The behavior of E for the third series (zir-
conia) is shown in Fig. 3. In this case the threshold is lo-
cated between 0.40 and 0.41. One notes that near p, the
values of E are 100-1000 times the value of E of the gel.
Our results are very diAerent from those obtained with
monodisperse spherical particles as filler: There is no
singularity in the curve of E(p), even for p as high as 0.6.
We believe that our experiments, where a singularity is
clearly observed, can be analyzed as a percolation phe-
nomenon.

First we consider the regime of small p, where the re-
sults can be compared with the predictions of the eA'ective
medium theory (EMT). This theory [13l predicts that
E ' decreases linearly when p increases and goes to zero
for p, calculated in this approximation. In the case of
spherical rigid inclusions p, =0.33 but in general the
threshold is shape dependent. In Fig. 1, one can see that
the behavior of E ' with p is eAectively linear for

p (0.15 and the extrapolation of the straight line gives

p, =0.34. This value seems to indicate that the rigid
inclusions behave almost as spherical inclusions in spite of
their very irregular shape. This is the first direct verifi-
cation of the EMT theory in the case of the superelastic
problem.

Near the threshold, the pseudodivergence of E can be

0.4-

I

compared with the analytic expression E —(p, —p)
To determine the exponent s', the usual method is to plot
E vs p, —p in a log-log plot. However, in the present
case, p, is not precisely known. Taking p, =0.50 (as sug-
gested by Figs. I and 2) for the samples filled with the
alumina powders the log-log plot gives straight lines for
the smaller values of p, —p and an exponent s'=0.65. A
small change in p, (between 0.495 and 0.505) gives a
slight diA'erence in the value of s'. For each value of p„a
linear fit is made and the best fit is obtained for p, =0.50,
s' =0.64 ~ 0.02.

The results of the samples filled with zirconia give less
precise results. The determination of p, cannot be made
precisely although it is clear that 0.40» p, &0.41. We
choose several values of p, between 0.400 and 0.408 and
we get from the log-log plot an exponent between 0.640
and 0.720. In Fig. 4, we show the log-log plot of E vs

p, —p for p, =0.402 and one has s'=0.69. Thus we can
adopt the value s'=0.67 ~0.05. This relatively large er-
ror is due to an inherent dimculty of the problem: The
behavior of E is not a true divergence but only a pseudo-
divergence. This prevents a close approach to p„as
needed for a good determination of the exponent. Our re-
sults give an additional piece of evidence to conclude that
s' & s. Furthermore, the value of s' we got is in very good
agreement with the theoretical one of Arbabi and Sahimi
[4].

The values of p, are relatively large, but this is not the
first such observation. Abeles, Pinch, and Gittleman [141
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FIG. 3. (a) E vs p in the case of zirconia powder as filler.
(b) E ' vs p, near p, .
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FIG. 4. E vs p, —p in a log-log plot, showing the divergence
of E as (p, —p) ' with s'=0.67.
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have reported a threshold of 0.47 for W-A1203 cermets
value which is near what we obtain in our work (0.4 and
0.5). The reason for that is not known but it seems that
it does not preclude the use of percolation theory.

The authors thank F. Ilmain and S. J. Candau for use-
ful information on the gel preparation.
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