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‘We resolve the mean square displacement of particles in concentrated suspensions during the
first 20 ns of their motion, before hydrodynamic interactions between particles have had time to
fully develop. Nevertheless, we find that the concentrated systems exhibit clear deviations from the
isolated-particle theory. These deviations are well described by several scaled versions of the isolated-
particle theory. The measurements also demonstrate a new multiple-scattering photon correlation

technique with ultrashort time resolution.

PACS numbers: 82.70.Dd, 05.40.+j, 66.20.4+d, 82.70.Kj

The Brownian motion of particles in a fluid is a prob-
lem with spectacular historical roots [1] that continues
to provide us with intriguing new physics. Most recently
there has been renewed interest in the first steps of these
motions [2-5]. This is largely a result of new experi-
mental probes [4, 6] that enable us to measure particle
displacements down to 1 A, and thereby offer the possi-
bility to quantitatively test hydrodynamic theories [2, 3]
of nondiffusive particle motion.

Perhaps the simplest possible Brownian system is com-
posed of an isolated spherical particle of radius a in an
infinite, incompressible fluid with density p and viscos-
ity n. A full hydrodynamic treatment of this problem [3]
reveals that a Brownian particle will persist in a given
direction of motion until the fluid momentum (or vor-
ticity) generated by the Brownian particle diffuses away.
This leads to a slow power-law decay of the particle ve-
locity autocorrelation function characterized by a hydro-
dynamic time scale, 70 = pa?/n, which corresponds to
the time it takes the vorticity to diffuse a particle radius.
Purely diffusive particle motion sets in on time scales of
10370. In any real suspension, however, particles are not
isolated but are coupled via hydrodynamic forces. While
substantial work has been devoted to the diffusive mo-
tion of interacting particles on long time scales, at present
there is little understanding of the nondiffusive motions
of interacting particles at very short time scales.

In this work we resolve the mean square displacement
(Ar?(7)) of particles in concentrated hard-sphere sus-
pensions during the first 20 ns of their motion. These are
the shortest time scales ever probed in the study of Brow-
nian dynamics. The measurements reveal the influence of
transient hydrodynamic interactions on time scales of the
order 70 and substantially shorter. Our measurements
encompass three particle sizes and particle volume frac-
tions ¢ of up to 0.24. We find that the dilute systems
follow the isolated-particle theory [3] down to approxi-
mately 70/10. However, over these same time scales, the
concentrated systems exhibit clear deviations from the

isolated-particle theory. This latter result is particularly
surprising since even in our most concentrated samples,
the mean distance between adjacent particle surfaces is
comparable to or greater than the particle radius. In
this limit, one might expect that there would be insuffi-
cient time for hydrodynamic interactions between parti-
cles to be significant. Furthermore, an intriguing scaling
with concentration that has been observed on time scales
longer than 72 [5] appears to describe our data at times
substantially shorter than 70. We find, however, that our
observations can also be described by other scaled ver-
sions of the isolated-particle theory. The present mea-
surements also provide an important experimental test
of a new lattice-Boltzmann simulation scheme [7] and in-
troduce a new class of correlation experiment which com-
bines diffusing-wave spectroscopy (DWS) [6] with Michel-
son interferometry to yield electric field temporal auto-
correlation functions on nanosecond and subnanosecond
time scales [8].

The first part of our experimental apparatus [see Fig.
1(a)] utilizes standard DWS techniques [6]. Sample cells
containing suspensions of polystyrene spheres in water
were illuminated from one side by the 514-nm line of a
cw Ar-ion laser and a single speckle of transmitted light
was monitored. To obtain mean square particle displace-
ments on nanosecond time scales, we have made a novel
modification. We replaced the electronic photon corre-
lator with a 3-m Michelson interferometer. The sample
speckle field is divided at the interferometer entrance,
directed along two spatially separated paths of differing
length, and then recombined on a light detector. In this
case the time-averaged intensity we measure (I(7)) de-
pends on the temporal delay 7 introduced between the
recombined fields, the optical carrier frequency w, the
average speckle intensity I,ye, and the temporal autocor-
relation function g (7) = [(E*(t + 7)E(t)) |/ {|E(¢)|?) of
the sample speckle field, i.e.,

(I(m)) = 3ave [1 + g1(7) cos(wT)] . (1)

242 © 1993 The American Physical Society



VOLUME 70, NUMBER 2

PHYSICAL REVIEW LETTERS

11 JANUARY 1993

CW Laser

Lockin Amp

(a)

>
2 oR < o

OF 3
c 2
[0} " & @ ]
o s 5
= jﬁ L%@%U & B s
T 05} ¢ s @ g R ¢
2 o s @ 8 — N
N r g B o I
s W oy W * '
g 3 X ! 3
S 00 b
= Py ] > 0.5 L 1 i I

[¢] S 10 15 20

Relative Optical Delay (») T (nsec)

(b) (c)

FIG. 1. (a) Experimental setup. Coarse delays are imple-
mented by moving the long interferometer arm. Fine delays
are achieved by changing the partial pressure of the air wedge
in the short arm. (b) Normalized scanning fringes at 7 = 0
ns (solid dots) and 7 = 20 ns (squares) for ¢ = 0.0385, 0.299-
pm-diam polystyrene suspension. The vertical axis is the nor-
malized light intensity measured on the lock-in amplifier. The
effects of laser coherence and geometry were normalized using
a dilute sample that did not decay on the time scales probed.
(c) A single run of g1(7) vs 7 for the same suspension.

Thus, the temporal visibility of the detected intensity di-
rectly yields g1(7). Our new method overcomes several
limitations inherent in conventional photon correlation
methodologies. The time resolution is at least 10 times
better than the smallest commercially available corre-
lator bin width and can in principle be as short as a
few femtoseconds; the minimum count rates can be lower
than 1 kHz without degrading the signal-to-noise ratio,
and in contrast to DWS intensity correlation measure-
ments [9], the information derived from the electric field
correlation function is not affected when the laser coher-
ence length becomes smaller than the typical photon path
length through the medium.

In Fig. 1(b) we show two normalized visibility curves
taken at delays of 7 = 0 and 20 ns. The amplitude decay
of these oscillations reflects the particle motions. We de-
termined these amplitudes in 1-ns intervals by the coarse
movement of one arm in the interferometer. The decay
of visibility, i.e., g1(7), during one experimental run is
shown in Fig. 1(c). We determined g;(7) for samples of
0.205-, 0.299-, and 0.460-um-diam polystyrene spheres in
water for volume fractions ¢ ranging from 0.02 to 0.24.
By adding an appropriate amount of HCI to the suspen-
sion, the particle screening length was kept below 50 A,
thereby ensuring that the direct interactions were essen-
tially hard sphere. The sample cells were immersed in

water in order to maintain the sample temperatures at
24°C and minimize reflections at the sample walls.

For weakly interacting but multiply scattering particle
suspensions, DWS theory gives [6]

* —31Kk2(Aar? 1 _—s/l
g1(7) =/ P(s) e 3k(Ar* (M) o/1" g=s/la gg . (2)
0

Here ko is the wave vector of light in the medium, {* is
the photon random walk step length [6], [, is the light ab-
sorption length in the medium, and P(s) represents the
probability that a photon travels a distance s through
the medium before emerging at the detection point. The
spatial resolution of the measurement is set by the typical
path length of a diffusing photon. In order to resolve dis-
placements less than 1 A, this path length must be several
meters. Thus, the experiment required very thick sample
cells (1 to 3 cm) and we had to systematically account for
the effects of absorption and geometry in these samples.
‘We independently determined I* for each of our samples
by static transmission and by long-time diffusion mea-
surements using conventional DWS on millimeter-thick
samples. The DWS measurements were typically within
5% of our calculations of [* from Mie theory, but were
exceedingly accurate (~ 1% variation) and were prone
to fewer systematic errors than either the static trans-
mission measurements or the theoretical estimates which
require accurate knowledge of sample material proper-
ties. We computed P(s) analytically for our cylindrical
cells [10] and included the effects of light loss through the
cell walls as well as the exact illumination and detection
geometries. Finally we performed absolute transmission
measurements as a function of cell thickness which, along
with our measured [* and calculated P(s), enabled us to
deduce I, (1-5 m). Using this information and our mea-
sured g;(7), we determined (Ar?(r)) by inverting Eq.
(2).

For volume fractions of a few percent and lower,
(Ar?(r)) is accurately obtained from the measured g1(7)
using Eq. (2). At higher concentrations, however, inter-
actions become important and the measured g;(7) can
also contain contributions from density fluctuations in-
volving more than one particle, particularly if the mean
interparticle distance is less than the wavelength of light.
In this case, the quantity (Ar?(r)) in Eq. (2) must be
replaced by

{(ar?(1)) + [Alg, 7))} /1S(9)], (3)
where S(g) is the structure factor of the suspension
and A(q,7) = % Ef;a (Ary(7) 'Arj(T)eiq'[“(O)“‘”f(O)]>
is a time- and g¢-dependent factor which accounts for
the correlated motions and scattering of different par-
ticles [11]. The square brackets denote the g average,
[X] = [ X(q) F(g)a°da/ [3™" F(q)q* dq, where F(q)
is the particle form factor. The structural correction
[S(q)] is easily computed within the Percus-Yevick [12]
approximation and works very well for hard spheres at
these volume fractions. The quantity [A(g, )] has been
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calculated for hard spheres at long times when the par-
ticles are moving diffusively [13]. In the long time limit,
[A(g,7)] is ~ 6 times smaller than (Ar?(r)) for our most
concentrated sample of 0.205-um-diam spheres. The cor-
rection factor rapidly diminishes with both increasing
particle size and decreasing volume fraction. [A(g,T)]
has not been calculated at short times, but must vanish
as 7 approaches zero. Our data span both dilute and
concentrated regimes. In our analysis we have assumed
[A(g, T)] is zero, but we have included the structural cor-
rection. We will reexamine the possible violation of this
approximation towards the conclusion of the paper.

In Fig. 2, we show the time-dependent rms displace-
ment, 1/(Ar2(7)), of 0.205-um-diam particles at two dif-
ferent concentrations. Data from the lowest concentra-
tion sample, ¢ = 0.02, are in excellent agreement with
the isolated-particle theory [3]. We emphasize that there
are no adjustable or calculated experimental parameters
in making this comparison. These results confirm the va-
lidity of the hydrodynamic theory down to times much
less than the characteristic hydrodynamic time 70 (12.5
ns for this sample). At higher concentrations, the data
exhibit systematic departures from the isolated-particle
theory. At a given delay time 7, the rms displacement
of a particle decreases with increasing volume fraction
consistent with the expectation that hydrodynamic in-
teractions with neighboring particles effectively impede
particle motion. We have observed these effects in all
our concentrated samples on time scales significantly less
than the time it takes the fluid momentum to diffuse
the mean distance between nearest-neighbor particle sur-
faces. The measurements suggest that average particle
motion is still modified by hydrodynamic interactions,
but that these interactions arise only occasionally be-
tween particles whose distance of closest approach is sub-
stantially smaller than the mean particle separation.
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FIG. 2. The rms displacement \/(Ar2(7)) vs 7 of 0.205-

pm-diam polystyrene spheres in water at two different vol-
ume fractions. The solid line is the isolated-particle the-
ory of Hinch. The dashed line is the prediction of simple
Langevin theory that includes only Stokes drag. The concen-
trated suspension clearly shows measurable deviations from
the isolated-particle theory.
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Recent experiments [5] and simulations [7] suggest that
the time evolution of Brownian particles in concentrated
suspensions obeys a remarkable scaling with respect to
the isolated-particle theory. Briefly, the isolated-particle
theory predicts (Ar?(r)) = 6Do70 f(7/70), where Dy =
kT /6man is the Stokes-Einstein diffusion coefficient, and
f(r/70) is an algebraic function [3]. Scaling is accom-
plished by replacing Dy and 70 with the ¢-dependent
functions D(¢) and 7,(¢). In Fig. 3 we investigate three
different scaling schemes. In each graph we plot a scaled
rms displacement, {{Ar?(7)) /6D(¢)7‘,,(¢)}1/2, as a func-
tion of a scaled time 7/7,(¢). The first scheme, origi-
nally proposed by Zhu et al. [5] to explain volume frac-
tion dependent measurements on time scales greater than
70, sets D(¢) = Ds(¢) = Do(1 — 1.83¢) and 7,(¢) =
pa? /nur(4), where nur(¢) is the high frequency viscos-
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FIG. 3. Scaled rms displacement {<Ar2(7')>/6D(¢)

x7,($)}/? vs scaled time 7/7.(¢). In each graph, the
three scaling theories are shown (see text). The lower set
of data is scaled by D(¢) = (1 — 1.83¢)Do and Beenakker’s
Tv(¢) = pa® /nur(¢); the middle set by D(¢) = (1 — 1.83¢4) Do
and 7,(¢) = 70(1 — 1.83¢); the upper set by D(4)
kT /6manur(¢) and 7.(¢) = pa®/nur(#). The solid lines rep-
resent the square root of the isolated-particle function, i.e.,
f(r/7.(¢)). The data are displaced for clarity.
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ity of the suspension calculated by Beenakker [14]; in the
second scheme, D(¢) = D4(¢) again, but we scale time
according to 7, (¢) = 79(1 — 1.83¢); in the third scheme
we modify only the viscosity, i.e., D(¢) = kT'/6manur ()
and 7,(¢) = pa?/nur(4). It is apparent from the fig-
ure that all scaling schemes adequately describe the data
over the full range of concentrations explored for each
sample. Moreover, each of the scaling analyses provides
a significantly better description of the data than does
the unscaled isolated-particle theory of Hinch. A partic-
ularly interesting scenario is provided by the first scaling
analysis. Zhu et al. interpreted the scaling as evidence
that a Brownian particle moves in an effective medium
which has the viscosity of the bulk suspension. It is sur-
prising, therefore, that this same scaling analysis works
at such short times since a particle cannot sense the effec-
tive viscosity of the bulk suspension for time scales much
less than 79. Our analysis enlarges the range of viable
scaling schemes, and suggests that although the scaling
of Zhu et al. appears valid for 7 > 70 , another scaling
may underlie the behavior when 7 < 70 . Further work
is needed to clarify this issue.

Finally, we return to reconsider our earlier assumption
that the factor [A(g,7)] can be neglected in comparison
to (Ar?(7)) in Eq. (3). If [A(q,7)] < (Ar?(7)), then
all the data we present are properly interpreted as the
mean square displacement of a tracer particle. This hy-
pothesis is supported by the observation that all of our
results are well described by the scaling analysis, with
the possible exception of our longest-time data for our
smallest spheres. By contrast, it is possible that some
of the measured deviation of the data from the isolated-
particle theory arises as a result of non-negligible cor-
related scattering from different particles. In this case,
the time dependence of the deviation implies that the
motion of different particles is correlated for 7 < 70 and
that these correlations are changing over these same time
scales as a result of time-dependent hydrodynamic in-
teractions. Thus, regardless of our assumption about
[A(g,7)], the data clearly imply that there are signifi-
cant time-dependent hydrodynamic interactions between
different particles which affect particle motion on time
scales less than 70. This surprising result presents a chal-

lenge to our current theoretical understanding of many-
body hydrodynamic interactions between Brownian par-
ticles. In the future, lattice-Boltzmann computer simu-
lations and g-dependent DWS experiments may provide
new insight into these issues.
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