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Novel Soliton States and Bifurcation Phenomena in Nonlinear Fiber Couplers

Nail Akhmediev and Adrian Ankiewicz
Optical Sciences Center, Institute of Advanced Studies, Australian National Unit ersity, Canberra,

Australian Capital Territory 2601, Australia
(Received 4 February 1993)

We find and analyze analytically and numerically two new families of coupled soliton states in non-
linear fiber couplers. The bifurcation diagram for the new types of soliton states is constructed. It is

shown that the bifurcation diagram for the fiber coupler is similar to the bifurcation diagram for the sta-
tionary waves in a symmetric nonlinear planar waveguide. Physical reasons for this analogy are dis-
cussed.

PACS numbers: 42.65.Pc, 42.81.Qb

The study of nonlinear eAects in optical couplers has
expanded greatly since the pioneering works of Maier [1]
and Jensen [2]. One of their possible applications is to
all-optical switching [3,4] and logic functions [5]. Recent
experiments [6] show that very high switching speeds,
e.g. , in the femtosecond range, are possible with this kind
of device. Extensive theoretical and numerical investiga-
tion of soliton switching and propagation dynamics has
been reported in a number of publications [7-11]. In all
published works, it has been implicitly or explicitly sup-
posed that soliton states consist of two solitons having
sech-function shapes. This shape is usually assumed in

variational approaches in order to describe propagation
[8] or other phenomena. This shape has also been used
for initial conditions in numerical simulations [3,4]. In
reality the shape of each component in a coupled soliton
state can be quite diA'erent from the sech function. This
is particularly important in considering bifurcation phe-
nomena.

Mathematically, propagation of solitons in nonlinear
fiber couplers is described by the set of two coupled non-
linear Schrodinger equations (NLSE's) with linear (and
in general with nonlinear) coupling terms. In the case
where only nonlinear coupling terms are present, the bi-
furcation of composite (vector) soliton states from one-
component (polarized) soliton states has been found in

[12]. These bifurcations have been studied in detail in

[13]. Recently an attempt to study the same type of bi-
furcation (called "trivial-nontrivial") has been made in

the case where only linear coupling terms are present
[14]. A variational approach with trial sech functions has
been used by the authors of [14]. However, this approach
gives erroneous results for the envelopes of each com-
ponent of the composite soliton states, for the critical bi-
furcation parameter, and for the bifurcation diagram in

general. In this work we find two novel asymmetric soli-
ton state families which exist in certain ranges of a nor-
malized soliton parameter, and which can have quite
complicated component envelopes. These new soliton
states split off from the symmetric and antisymmetric sol-
iton states at two diAerent values of the soliton parame-
ter. We construct the full bifurcation diagram for the

1dt —qv+i +Ku =0.
dT

(3)

By rescaling the functions and variables in (3) in such a
way that

u =Wqf, v =Jqg, z =I/Jq, I~ =qv, (4)
we transform the set (3) into the set

1 d
2 dt2 f+f +tcg=0, —

—g+g +tcf =0,1dg
dt

(5)

symmetric, antisymmetric, and asymmetric soliton states,
and show that there is a close analogy between the bifur-
cations in the nonlinear fiber coupler and those in the
symmetric planar waveguide structure [15].

The propagation of pulses in a nonlinear dual-core
directional coupler can be described in terms of two
linearly coupled NLSE's [3]. In soliton units, this set of
coupled NLSE's is given by

2U+— + ~Ui'U+~V=O,
tl( 2 tlz2

16 V'V+ —' ' V+~ V~'V+SCU=O,
8( 2 |lz2

where U(g, z ) and V(g, z ) are envelope functions and K,
which is the normalized coupling coeScient between the
two cores, is equal to the linear coupling coe%cient times
the dispersion length.

Stationary pulselike solutions (i.e., those where d~U~/
dg =d~ V~/dg =0) can be represented in the form

U((, z) =u(z, q)e'~~, V(&, z) =v(z, q)e' ~, (2)
where q is the parameter of a soliton state family of solu-
tions and u((, q) and v(g, q) are real functions decreasing
to zero at infinity. Using Eq. (2), the coupled partial
differential equations (1) can be reduced to the following
coupled set of two real ordinary diAerential equations:

1 d D —qu+u +Kv =0,
2 dT:
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which now has only one combined (material- and pulse-
dependent) parameter x (=K/q). If the initial value of
K is fixed, then this combined parameter is the parameter
of the soliton state family of solutions.

It is clear here from the form of Eqs. (5) that sym-
metric and antisymmetric soliton states are possible. The
former are given by f=g =42(I —x) sech[42(1 x) t—],
where 0 ( rc(1, while the latter are given by f= —g=J2(1+x) sech[42(1+ x) r]. Applying the scaling [Eq.
(4)] shows that U= V=42(q —K) sech[42(q —K) r]e' q~

are the symmetric solutions of (1),(2) for any q & K,
while U = —V= J2(q+K) sech[42(q+K) r] e'~~ are the
antisymmetric solutions for all q &0. This form of the
soliton states shows that it is more convenient to change
variables to

f=(x+y)/J2, g=(x —y)/J2. (6)
In this case Eqs. (5) can be written in the form

x —o,' x+x +3xy =0, (7a)

y —p a y+y +3yx =0, (7b)
where a =2(1 —x ), p = [(1+x )/(I —x.) ] ', and each
dot means derivative with respect to t. If K & 1 then the
second term in (7a) changes sign and the symmetric soli-
ton state does not exist. Antisymmetric soliton states ex-
ist for any positive K.

Equations (7) can be considered as governing the
motion of a particle in a two-dimensional potential well.
The Hamiltonian for this motion is

H= —,
' x'+ —,

' y' —(x'+y')+x(x2 —y')
(x2+ 2)2 & ( 2 2)2 (8)

Comprehensive analysis of this type of Hamiltonian with
arbitrary coeScients in front of the nonlinear terms in
(8) was done in [16]. This analysis shows that only spe-
cial cases are integrable. Our Hamiltonian (8) belongs to
the nonintegrable class. We will analyze soliton states of
(7) and their bifurcations using methods like those in
[12] and [13].

Solitons are the solutions of the set (7) with H=O (as
we require x,y 0 when x,y ~). This means that all
trajectories corresponding to soliton states must be con-
tained within the curve

(x'+y') —x(x2 —y') —
—,
' (x'+y') —

—,
' x'y'=0, (9)

or, in polar coordinates (x=r cosy, y =rsinp),
r =4(l —x cos2p)/(I +sin 2p) . (10)

Each component of the composite soliton states we are
studying here is a symmetric function in t for both x and
y. This means that x,y =0 at the soliton center. Hence,
the center of symmetry points (which we define as r =0)
of the soliton states are located on the curve given by Eqs.
(9),(10). We define this point as (xo,yo), and the corre-
sponding angle with the x axis, p, as the coupling angle
&pp =arctan(yo/xo).

The set of equations (7) has simple soliton states at
pp =0,

x(r, x) =42asech(ar), y =0,
and at pp =90,

x=0, y(t, x) =J2apsech(apt), (i 2)
which correspond to symmetric and antisymmetric states
in the initial variables f and g, respectively. We recall
that solution (11) exists for 0 ( x ( I, while solution (12)
exists for any x'& 0.

In order to study the bifurcation from the state (11),
we represent the solution of Eqs. (7) as a soliton (11)
with an added small perturbation:

x =J2 a sech(at) + s F,
y =eG,

(i 3a)

(i3b)
where e is a small parameter. The linear term in e in
(13a) is zero. Substituting (13) into (7), and linearizing
with respect to the small parameter e, we find

Gt, —p a G+(6a /cosh at)G =0. (i 4)

G =sech at (at p =2) . (i6)
The odd solution (15) does not correspond to any bifurca-
tion because x =0 at p =1 and x and y become decoupled
in this limit. The even solution (16) makes the sym-
metric soliton state asymmetric at the point p =2 (i.e.,
x. =0.6). Hence x=0.6 is the point of bifurcation of
these asymmetric soliton states from the symmetric ones.
We shall call these states "8-type" asymmetric states.
We can see from this simple analysis that these new
states cannot be represented as sech functions. Even to
the lowest order, these states are combinations of two
different functions. The consequence is that, at high ~t~,
2-type states depend on two exponentials, while the sim-
ple sech function depends on only one.

A separate asymmetric soliton state bifurcates from the
antisymmetric states at K'=1. We shall call these states
"B-type" asymmetric soliton states. This is a more com-
plicated type of bifurcation, and it cannot be analyzed us-
ing perturbative analysis. The reason is that at x 1,
the value a in (7a) goes to zero. This means that the de-
crease of x at t ~ ~ can be much slower than the de-
crease of y. In other words the condition x(&y cannot be
fulfilled for all t simultaneously and we have to study the
set (7) for all x. in general, and close to this particular
point, using numerical methods.

In general, i.e., not only close to the points of bifurca-
tion, in these asymmetric soliton states, both variables x
and y are nonzero. They are located on the curve

y y(x) in the plane (x,y). It can be shown using (7)
and the condition 0=0 that this curve is defined by the
following differential equation:

Equation (14) has exactly two solutions which decay at
infinity. They are an odd solution,

G =sinhat/cosh at (at p = I ), (I S)

and an even solut&on,
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FIG. 3. Examples of the 8-type soliton states for (a) tv=0. 5
and (b) «. =O.OI. Solid curves represent the function —g, and
dashed curves represent the function f of the composite asym-
metric soliton state.

them. This structure can be considered as two self-
focusing nonlinear waveguides, coupled linearly through
the central layer [17]. Although the two situations are
similar, they are not completely identical. In particular,
the linear interaction between the field components in this
case is distributed along the t variable, in contrast to the
case considered in [15] where the interaction is concen-
trated on the interfaces. One of the consequences is that
the 8-type soliton state consists of three decoupled soli-
tons in the limit q ~. Correspondingly, Q values for
8-type states are 3 times larger than Q values for A-type
states in this limit. On the other hand, this close analogy
shows that the stability of new soliton states can be con-
sidered using methods developed for the symmetric non-
linear waveguide problems [17].

In conclusion, we have found two new families of com-
posite soliton states in nonlinear directional couplers and
constructed the bifurcation diagram for them. We have
shown that a close similarity exists between the bifurca-
tion diagram for this problem and that for the waves in a
symmetric nonlinear waveguide with linear core.
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