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We show that a dynamical system of IV phase oscillators with global cosine coupling is completely in-

tegrable.

In particular, we prove that the N-dimensional phase space is foliated by invariant two-

dimensional tori, for all V= 3. Explicit expressions are given for the constants of motion, and for the
solitary waves that occur in the continuum limit. Our analysis elucidates the origin of the remarkable
phase space structure detected in recent numerical studies of globally coupled arrays of Josephson junc-

tions, lasers, and Ginzburg-Landau oscillators.

PACS numbers: 05.45.+b, 03.20.+i

Globally coupled oscillators are a particularly simple
class of many-body dynamical systems, in which each os-
cillator is coupled to all the others [1-15]. This type of
coupling arises in series arrays of Josephson junctions
[1-6], electronic oscillator circuits [7], laser arrays [8],
charge-density waves [9], and multimode lasers [10,11].

Recent theoretical work has revealed that globally cou-
pled systems are prone to an enormous degree of neutral
stability, at least when the oscillators are identical
[3-6,8,12-15]. There are also hints of a remarkable
phase space structure. For instance, while studying the
dynamics of a series array of N overdamped Josephson
junctions driven by a dc-bias current and coupled through
a resistive load, Tsang et al. [4] found numerical evidence
that all solutions were periodic or doubly periodic, for all
N and for a wide range of parameters. In geometrical
terms, the N-dimensional phase space appeared to be
foliated by invariant two-dimensional tori, suggesting
the existence of N —2 constants of motion [16]. Ordi-
narily one would have expected some chaotic regions in
phase space, or in the case of an integrable Hamiltonian
system, tori of much higher dimension NV/2. The puzzle
is why the Josephson array has so many apparent con-
stants of motion. There are precedents for systems with
N —2 constants of motion (“‘nonholonomic integrable sys-
tems” in classical mechanics [17]), but these systems
have no sources of dissipation, unlike the overdamped,
resistively loaded Josephson array of Ref. [4].

While trying to understand the origin of the conjec-
tured 2-tori, we were led to the system

N
bi=w+-=3 cos(6;—6,), i=1,...,N. )]
N j=)

Equation (1) was obtained [5] from the Josephson array
equations via the method of averaging [17], valid in the
limit of weakly coupled junctions. Here the angles 6; are
related to the junction phases by a certain nonlinear
transformation [5], and w and g are the transformed bias
current and coupling strength, respectively. Equation (1)
also arises as the averaged system for globally coupled
van der Pol oscillators with linear conservative coupling
[18], and for the globally coupled complex Ginzburg-
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Landau equation at the Benjamin-Feir transition [15].

In this Letter we show that the averaged system (1) is
completely integrable. Its phase space is foliated by in-
variant 2-tori for all N = 3; apparently some remnant of
this structure persists in the original Josephson array
[19]. By an explicit change of variables we show that the
phase differences 0;(¢) — () oscillate periodically, and
that a Hamiltonian system with 1 degree of freedom
governs their dynamics. In the continuum limit the sys-
tem has solitary waves, which are also given explicitly.

Unlike the Toda lattice and other integrable N-body
systems [17], Eq. (1) does not come explicitly from a
Hamiltonian. Thus (1) may have theoretical interest, in
addition to its applications to oscillator arrays.

By going into a rotating frame and rescaling time, we
may reduce (1) to

N
9,=—1‘—ZCOS(91"'9,), i=1,...,N. (2)
N j=)

Note that (2) is effectively (V—1)-dimensional dynami-
cally—the system can be split into a mean phase and
N —1 phase differences. The mean phase is driven by the
dynamics of the phase differences, but it does not couple
back to them. Hence to show that (2) is completely in-
tegrable, it suffices to find N —2 independent constants of
motion. These have been found by trial and error. Since
the verification is unenlightening, we outline the results;
see [20] for details.

Let S,-j=sin[(0,-—9j)/2] and I=81,823"""
Sn—1.8Sn1. Then I is a constant of motion [21], as can
be checked by differentiation and trigonometric identities.
Because (2) is invariant with respect to all permutations,
we can now permute the indices in / to obtain N! con-
stants of motion. Precisely NV —2 of these are functional-
ly independent (except on a set of 6’s of measure zero).

Figure 1 illustrates the integrability for V=3. Instead
of considering the entire phase space, we may restrict at-
tention to the prism shown in Fig. 1. This canonical in-
variant region [3,22] corresponds to a particular ordering
of the oscillators, say 03 < 6, < 6 < 03+ 2x. (The order-
ing never changes since the oscillators cannot pass each
other.) On the bottom and side faces, two 6’s are equal;
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FIG. 1. A typical trajectory of (1) for N=3. The trans-
formed coordinates [3,71 are 6=%2X;6;(mod27), u,=6
—(6,+63)/2, us=(/3/2)(62—63). The trajectory lies on a
tube, which is actually a torus since 6=0 and 6=2r are
equivalent.

on the edges extending in the 8 direction, all three 6's are
equal, corresponding to a solution where all the oscillators
run in phase. Finally, there are periodic boundary condi-
tions on the front and back faces, since 8=0 and 6=2x
are equivalent. Figure 1 shows a single trajectory, ob-
tained by numerical integration of (1) from a random ini-
tial condition. The trajectory lies on a torus, defined im-
plicitly by I=5,52353; =const. The motion is quasi-
periodic, with a rapid advance along the 8 direction and a
slow winding around the torus. Other trajectories lie on
tori nested either inside or outside of that shown in Fig. 1.
Thus the whole phase space is filled with invariant tori.
The limiting torus at the center is a periodic orbit, corre-
sponding to the “splay-phase” or ‘“antiphase” solution
[1-8,11].

Now we consider (2) as N— oco. By analogy with
other integrable systems, one expects that the contin-
uum limit should support solitary waves. The appropriate
limiting system is an evolution equation for p(8,7), the
number density of oscillators, viewed here as particles
moving around the unit circle. Conservation of oscillators
yields 9p/8t = — 3(pv)/36, where the velocity field v(8,z)
is given self-consistently by v(8,1) =f§"cos(e —8)p(e,
t)de, from the infinite-N limit of (2). If we seek travel-
ing waves of the form p(6 —Ut), we find a one-param-
eter family of solutions p(6—Ut)=Qx) ~'W/IU—4
xcos(@—Ut)] and v(0—Ut) =Acos(6 —Ut), where U
=1(0+42% and V=1 (1 —42). Here A measures the
amplitude of both density and velocity modulations.
When A4 =0, the oscillators are uniformly distributed on
the circle and are motionless (recall that we are in a ro-
tating frame); this is the splay-phase solution. For
0 < A <1, the density is peaked about the point 6=Ut
and rotates around the circle at constant speed U, while
the individual oscillators move nonuniformly, hesitating
and accelerating according to the modulations in
v(0—Ut). Finally, as A— 1, the density approaches a
rotating § function, corresponding to the periodic in-
phase state.
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FIG. 2. In a frame rotating with the solitary wave p(8—Ut),
the individual oscillators (dots) move backward nonuniformly
(horizontal arrows). The motion is slow where the density is
high. A nonlinear change of coordinates (see text) converts the
nonuniform motion to rigid rotation at speed — V (vertical ar-
rows), and the oscillators become evenly spaced. The shaded
regions show the density before and after the transformation.

Now we introduce a change of coordinates that will
play a key role in the rest of the analysis. This transfor-
mation arises naturally here in the continuum limit, but
its main application is to the finite-N system (2). Consid-
er a coordinate system & =6 — Ut rotating with the wave.
The individual oscillators then have relative velocity
E=0v(£) —U <0. Suppose that we wish to convert this
nonuniform motion into uniform rotation with respect to
a new angular variable n. This can be achieved [20] by
the transformation tan(&/2) =Btan(n/2), where B=(1
+A4)/(1 —A) and 7= —V, with V defined as above. The
oscillators become evenly spaced in the new coordinates
and the density becomes uniform (Fig. 2). Now we
freeze the oscillators by introducing another rotating
coordinate y =n+ V. Thus the overall transformation is
tan[(0 —Ur)/2] =pBtanl(y —V1)/2]. The claim is that if
the oscillators have speed v(8—Ur) and density
p(@—Ut) in the 0 coordinate system, they will appear
frozen and uniformly distributed in y.

This transformation can be generalized to simplify al/
the solutions of the continuum system, not just the soli-
tary waves [20]. More importantly, it can be extended to
the finite-N system (2). Given any solution {6;(¢)} of
(2), let

0;,(t) — ,'—‘I’(t

tan—()—& =ﬁ(t)tanw——-—) , 3)
2 2

fori=1,...,N. The evolution of ©(z), ¥(¢), and B(z) is

unknown for now, but will be determined later as part of
the solution. The angles y; are assumed to be frozen, by
analogy with the earlier results. The transformation (3)
should seem optimistic: It implies that an arbitrary solu-
tion of (2), which consists of N time-dependent functions
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0:(t), can be generated by just three functions ©(t),
¥(¢), and B(¢), and N constants y;. We now verify that
this remarkable reduction is possible.

The first step is to show that (2) is satisfied identically,
if ©, ¥, and B are chosen appropriately. After solving
(3) for 6;(¢) and substituting in (2), we obtain ¢ ()
+c(t)cosly; — ¥ ()1 +c3()sinly; —w (1)1 =0,  where
the coefficients ¢4 (¢) are complicated but independent of
i=1,...,N. Hence the equations above are satisfied
identically for all i and all ¢ if ¢, (¢+)=0, for k=1,2,3.
These three conditions imply [20]

_ (1—y?)3? sin(y; —¥)

4 N 7 1—ycos(y;—¥) ’ (42)
L _ (=)' y—cos(y; —¥)

¥ N T 1—ycos(y,—w¥) "’ (4b)
o_ 1 5 _y—cos(y;—¥)

0 N ; 1—ycos(y;—¥) ’ (4e)

where the new variable y=(82—1)/(8%+1) has been in-
troduced for convenience. Thus, if ©(¢), ¥(z), and y(¢)
evolve according to (4), then the {6;(s)} defined by (3)
are guaranteed to solve (2) for all ¢.

Equation (4) also suggests natural constraints on the
constants {y;}. If y=0, then (4b) and (4¢c) are satisfied
identically in ¥ if and only if X;cosy; =2X;siny; =0.
From now on, assume the {w,-} satisfy these constraints.

To finish the reduction, we show that all solutions of
(2) can be generated by (3), subject to the constraints on
fw:}. It suffices to check that for a given set of initial
conditions {6;(0)}, we can always find corresponding con-
stants {y;} and initial conditions ©(0), ¥(0), and ¥(0)
for (4). After solving (3) for y; and imposing the con-
straints, we find that ©(0) and y(0) must satisfy

2 [y+cos(8; —©)1/[1+ ycos(6; —©)1 =0,
J

2 [sin(; —©)1/[1+ ycos(; —©)]1 =0

j

simultaneously. A topological argument [20] based on
index theory proves that these equations have a solution
in the allowed region 0 < y(0) <1, 0=<6(0) <2x, for
all generic {6;(0)} [23]. Hence ©(0) and y(0) can be
found. On the other hand, ¥(0) is arbitrary. To fix it,
we must impose a third constraint on the {y;}, e.g.,
Y y;=0. Then (3) shows that ¥(0) and {y;} are deter-
mined by ©(0), y(0), and {6;(0)}, as required.

Thus the integration of the N-dimensional system (2)
has been reduced to the integration of the three-
dimensional system (4). More precisely, we have shown
that (2) is equivalent to an (/V—3)-parameter family of
three-dimensional systems. The N — 3 parameters are the
{w,-}, subject to the three constraints imposed above.

The final part of the argument is a proof that the solu-
tions of (4) are confined to 2-tori. First, Eqs. (4a) and
(4b) show that y and ¥ are decoupled from O; in fact,

the (y,¥) subsystem is equivalent to a Hamiltonian sys-
tem with 1 degree of freedom. To see this, let a=(l
—¥2) "2 Then d=—9H/d¥, ¥ =9H/da where

N
Hia¥) =4 X Inla= (@~ D eos(y; =¥, ()
p-

The appropriate phase space for (5) is a cylinder because
H is 2z periodic in ¥. For this Hamiltonian flow on a
cylinder, the trajectories are closed orbits (or fixed points,
in exceptional cases). Hence a(¢), and therefore y(z), is
periodic in z. Then (3) implies that the phase differences
0;(¢) — 0, (1) are periodic as well.

Second, consider the dynamics of ©(r). Suppose that
after one period T of y(¢) and ¥(z), © shifts by some
amount, say ©(+T)=06()+2zW. Since the right-
hand side of (4) is independent of ©, the same shift
occurs on the next cycle, and so on. Thus ©(+kT)
=0(t)+2xkW, for k=0,1,2,.... Therefore the solu-
tions of (4) are typically quasiperiodic, with winding
number W. This completes the proof that the trajectories
of (4), and hence of (2), are typically confined to 2-tori.

Figure 3 illustrates these results for the case N =4. As
in Fig. 1, we have transformed coordinates to an orthogo-
nal system based on the mean phase 8 and N —1 relative
coordinates (phase differences). Only the phase
differences are shown in Fig. 3. All orbits are closed, as
expected from our result that the phase differences are
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FIG. 3. Three-dimensional projection of the phase portrait
for N=4. The coordinates are 9_=.11_Zj9j, u1=l—(0|+02
—603—04), uz3= :‘ (X6, F60,+6:—64). Only (uy,uzus) are
shown, since their dynamics are independent of 8. The canoni-
cal invariant region 64<6;<6,<0,=<64+2n defines a
tetrahedron. Notation: dotted edges of the tetrahedron = two
pairs of equal 6’s; solid edges = three equal 0’s; vertices = in-
phase solutions; dashed bar inside = filament of ‘“‘incoherent”
states; dot at center = splay-phase state. Trajectories were
generated by integrating (4) for several values of y(0), with
¥(0)=06(0)=0, y14==* %, and y23==F 5 x. Changing
y(0) produces closed orbits of different amplitudes which to-
gether form a warped surface. y(0) =0 yields an incoherent
state while y(0)— 1 produces a large orbit that passes by all
four vertices, and hence is near the in-phase state.
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periodic. (We do not see 2-tori, since we have projected
out the § motion.) The orbits encircle the filament of
“incoherent” fixed points, defined by the conditions
2jcos8; =2 ;sin; =0. As y(0) increases, the orbits ex-
pand and sweep out a warped surface. A different choice
of {y;} would produce a different surface; these surfaces
are stacked side by side, skewered by the incoherent fila-
ment. On each surface the dynamics is Hamiltonian.

Our methods also yield the first global stability results
for the more general system

N
6,=L 3 cos(0,—6,—5), i=1,....N. 6)
N j=)

Equation (6) arises as the averaged system for both the
complex Ginzburg-Landau equation with weak global
coupling [15], and for series arrays of Josephson junc-
tions weakly coupled through an RLC load [24]. The
value of & depends on the particular parameters in the
physical system. Two cases are familiar: When § =x/2,
Eq. (6) is the infinite-range XY model at zero tempera-
ture, and when §= —nx/2, (6) is the antiferromagnetic
XY model. But for other values of &, we do not have gra-
dient (relaxational) dynamics and standard techniques do
not apply. Our analysis goes as before, starting from the
transformation (3), and once again we find N—3 con-
stants of motion, namely, the {y;} subject to their three
constraints. The new feature is that H is no longer con-
served; now it plays the role of a Liapunov function. We
find H=P(a,‘l’,{v/i})sin6, where P is a positive definite
function [20]. The trajectories are still confined to
warped surfaces, but now they move in spirals rather than
closed orbits. For sind >0, H increases and almost all
solutions spiral out to the in-phase state, while for
siné < 0 they spiral down to an incoherent state predeter-
mined by {y;}. In the original nonrotating frame, these
incoherent states would appear as an attractive manifold
of marginally stable periodic states. Such states have
been detected numerically [3,13].

After this paper was submitted, we noticed that the
same analysis gives N — 3 constants of motion for the full
equations governing series arrays of overdamped, identi-
cal Josephson junctions (not only for the averaged coun-
terparts studied here). This result [20] explains much of
the neutral stability and phase space structure that has
been detected previously, and it also provides bounds on
the dynamical complexity of Josephson arrays. For in-
stance, an array of /N overdamped junctions with an RLC
load has phase space dimension /N +2; since there are
N —3 constants of motion, the dynamics are effectively
five dimensional. Hence any chaotic attractors must have
a dimension =<5, for all N. Unfortunately, our methods
fail for underdamped junctions; this case is important for
future study, as is that of nonidentical junctions.
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