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Quasiregularity of Hamiltonian chaos is approached using the concept of the type of a chaotic orbit,
i.e., the sequence of resonances visited by the orbit. A simple method is introduced for determining the
type in the case of kicked-rotor Hamiltonians. First applications of this method are given in the calcula-
tion and study of quantities characterizing "vague tori" within resonances, namely, survival probabilities
and average dwelling times. Results concerning a newly defined disorder parameter, characterizing
quasiregularity, are briefly reported.

PACS numbers: 05.45.+b

Generic H amiltonian systems exhibit regular and
chaotic motions interleaved on all scales of phase space.
The regular motion takes place on ordered and/or stable
orbits (periodic orbits, KAM tori, cantori, and homoclinic
orbits) associated, usually, to an infinite hierarchy of is-
lands around islands [1]. This ordered structure seems to
persist for arbitrarily strong chaos [2], and affects sig-
nificantly the chaotic motion. A typical chaotic orbit
looks like a random sequence of "quasiregular" segments,
each resembling some ordered orbit in its immediate vi-

cinity.
This key feature of Hamiltonian chaos has important

manifestations, which have been the subject of several in-
vestigations during the last decade. Quasiregular seg-
ments of chaotic orbits have been associated with "vague
tori" [3], characterized by "approximate constants of
motion" in some time interval. Transitions from one
"vague torus" to another, known as "tori jumps" [4], give
rise to an intermittent-like behavior, with the laminar
phases corresponding to the quasiregular segments.
These segments may be identified by a spectral analysis
[5] of the chaotic motion, each segment being associated
with the fundamental frequency of some ordered orbit, in

whose neighborhood the segment lies. The lengths of the
segments may be arbitrarily long, leading to slow decays
of correlations [6] and related phenomena.

In all these investigations, however, the notion of
quasiregularity has been approached on a semiempirical
basis. The results thus obtained are approximate and
somehow vague. For a more complete and detailed
analysis, accurate calculations, and to avoid ambiguities,
a more systematic approach is required. This should be
based on a precise definition of quasiregularity, namely,
how exactly the quasiregular segments are associated
with ordered orbits of well defined dynamical specifi-
cations. Clearly, one needs first a partition of phase
space into regions containing, in a natural way, the
ordered-motion components on all (existing) classes [1]
of the island-around-island hierarchy. The sequence of
quasiregular segments for a chaotic orbit can then be
identified with the sequence of regions visited by the or-
bit. In order to apply this definition of quasiregularity to

several problems of interest, e.g. , those mentioned above,
it is most important to devise eA'ective methods for deter-
mining the sequence of regions visited by each given (nu-
merical) chaotic orbit.

In this Letter we study a precise definition of quasire-
gularity for a typical model system by introducing a sim-

ple method for determining the sequence of quasiregular
segments. The model system considered, exhibiting the
generic mixture of regular and chaotic motions, is the
family of area-preserving maps

pr ~ ] =pr +Kf(xr),

xr+& = rx+p r&+(modl),

corresponding to kicked-rotor Hamiltonians. Here K is
the "kicking" parameter, and the impulse function f(x)
is periodic in x with period 1 (2trx is the rotation angle).
We assume f(x) to be antisymmetric, so that the maps
(1) are reversible [7]. The basic regions of ordered
motion for (1) have been identified recently [8] with the
resonances [9-12]. As defined in Ref. [9], a resonance
(m, n), m and n being relatively prime integers, is a chain
of n closed regions (the "islands" ) bounded by pieces of
stable and unstable manifolds of a hyperbolic ordered
[13] periodic orbit of winding number m/n Out of t.he n

islands, n —
1 are the first n —

1 map preimages of the nth
island, to be referred to as the "central" island. For a
large class of interesting functions f(x) (to which we
shall restrict our attention), it appears that the resonance
boundaries (pieces of stable and unstable manifolds) can
always be chosen [9] so that the central island is symme-
trically positioned around the "dominant" symmetry line
[7] x =0 of (1). Moreover, numerical [9] and analytical
[12] evidence indicates that, with this choice, different
resonances do not overlap. Now, in the absence of KAM
tori, the total area of resonances, for all m/n, is equal to
the area of phase space [10]. It then follows that the res-
onances give a complete partition of phase space, so that
a general chaotic orbit must have all its points within res-
onances. The type [8] r of the chaotic orbit is the se-
quence of resonances visited by it, and is denoted by

(mr~nr)q, , (mr+t~nr+/)q+r . . . where qr is a posi-
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tive integer denoting the number of consecutive visits of
resonance r, (m„n„) (or number of rotations performed
in r). The type specification of chaos is a definition of
quasiregularity on the lowest class (class 0) [1] of the
island-around-island hierarchy. To extend this definition
to higher classes, one has to partition each resonance into
regions containing the island-around-island structure.
However, while the resonance partition seems to be gen-
eric for the maps (1), this is not the case for the secon-
dary partitions, which may not even exist for some maps
(see Ref. [12]). The resonance partition turns out also to
be sufficient for many purposes. We shall therefore re-
strict ourselves here to the definition of quasiregularity
given by the type specification.

A trivial method for determining the type of a (numer-
ical) chaotic orbit of (1) is to calculate first the resonance
boundaries (pieces of stable and unstable manifolds) for
all winding numbers m/n with, say n ~ no, where no is

large enough, and to determine then in which resonance
each point of the orbit lies. This method is clearly quite
tedious, since it requires very accurate numerical calcula-
tions of the resonance boundaries as large sets of data
points, which have to be stored for determining the type.
Moreover, as the resonance boundaries vary with K, these
calculations have to be repeated for each value of K con-
sidered. These difficulties can be avoided by using a
much simpler method, based on the following observa-
tion: With the standard choice of the resonance boun-
daries (see above), the central island of each resonance is

symmetrically positioned around the dominant symmetry
line x=0. This line then divides the central island into
two halves: the % half to the right of x =0 and the L
half to the left of I= 1. In addition to the type
specification I;, one may also specify which of the regions
X or R is visited, for each resonance in z. This leads to
a coding scheme [z,X —%j, which was considered re-
cently [12] in a special case of z for the sawtooth map,
with f(x) =x —0.5. In general, we denote [12] by X,
the value of x, lifted to the real axis, i.e., Xt =x&+a&,
where a, = [X,] is the greatest integer less than, or equal
to, X, . One then obtains from (1) the "Newton" equa-
tion

xi i i 2xg +xg —i
=Kf(x( )

where

(2)

b& =a&+) —2a, +a, —) .

Our main statement is now that the code [z,X —Jkj, in

particular the type r, is uniquely determined by the se-
quence a, (or b„with ao and a~ fixed by the initial condi-
tions). The general stages of the proof are as follows (de-
tails will be given elsewhere [14]). First, a, may be easily
expressed in terms of the code [z,X —%j (see a special
case in Ref. [12]). This expression does not depend on
the details of the map [K or f(x)], since it is just a conse-
quence of the common symmetry and topology shared by

the resonances in the maps (1). Next, suppose that two

orbits, with diff'erent codes [z,X —Rj, give the same a,
by this expression. Since the expression is map indepen-

dent, this is also true for the sawtooth map, provided the
two codes exist for this map. This is indeed the case,
since it is easy to show that any allowed code [z,X —%j,
for a general map (1), also exists for the sawtooth map if
K is sufficiently large. But the sequence a, is known [12]
to be a symbolic dynamics for the sawtooth map; i.e., it

determines the orbit completely. This leads to a contra-
diction, and our statement is thus proven. The type r can
then be easily determined as follows: (a) For each r, cal-
culate from (2) the sequence b, Jv, . . . , b, +~ (2N+ I

elements) for N large enough (see below). (b) Calculate
the corresponding orbit x&' for a sawtooth map with a

properly chosen %parameter K„using the known [12] rela-

tion between x, ' and b, :

2 (= —N ks ~s

K, + (K'+4K, ) '"
X, =1+

2

(3)

The parameter K, is chosen so that the sequence bt is al-

lowed for this sawtooth map, i.e. , that [12] 0~ x, ' ~ 1

for all r. We notice from (2) that ~lb, ~

~ Kf+2, where f
is the maximal value of f(x). Using then the exact for-
mula for x&' [Eq. (3) with N =~], it is easy to see that

b, is certainly allowed if one chooses

K, =2[KJ+2] . (4)

(c) Finally, the type z is straightforwardly determined
from the orbit (3) and the analytic expressions for the
resonance boundaries of the sawtooth map [12]. Here all

the resonances (m, n) with n ~ no are considered, and no

is chosen in consistency with the accuracy N of the ap-
proximation in (3).

As an example, let us use this method to determine the

type of a long chaotic orbit in the standard map, with

f(x) = —sin(2+x)/2x. In this case, K, =4 in (4) for all

K & 2z. This is a most interesting domain of parameters
for the standard map. Now, the error in the approxima-
tion (3) is of the order of X, , and the width [12] of the
highest-order resonances considered is of the order of

Thus, when computing in double-precision arith-
metic with K, =4, it is consistent to choose values of N
and no not larger than N =no=20. The type is then

determined up to resonance order no. Provided K is not

too small, the probability that the orbit will visit reso-
nances of order higher than no is usually quite small. In

fact, we find that this is the case even for values of K
close to the critical value [15] K, = 0.9716. . . . An exam-

ple is shown in Fig. 1 for K=1.2. The type of the orbit is

plotted here, in a natural representation, up to the first

crossing time of a golden-mean cantorus.
We now consider some applications of the method. As
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FIG. l. Type of a chaotic orbit for the standard map at
K= 1.2, with initial condition (xo,po) =(0.5001,0.0). The type
is represented here by the winding number v=mln of the reso-
nance visited as a function of time t. This is a steplike function,
assuming a constant value m, /n, in a time interval of length

q, n, [q, rotations in resonance (m„n, )]. This function is plot-
ted up to the first crossing time of a golden-mean cantorus with
v = (JS —3 )/2.

FIG. 2. Log-log plot of the survival probability in resonance
(1,2) of the standard map at K=1.5, calculated by collecting
chaotic-orbit segments trapped in (1,2). These segments are
identified using our method for determining the type, as de-
scribed in the text. The ensemble of chaotic orbits considered
has initial conditions on a 30x30 grid localized around the hy-
perbolic fixed point (0.5,0.0). The length of each orbit is 25000
iterations.

a first application, we study the survival probability [6] in

a resonance (m, n), to be denoted by P „(q). This is the
probability that a chaotic orbit, entering (m, n) at time
t =0, will remain in (m, n) at least until t =qn —1; i.e., it
will perform at least q rotations. P „(q) is a good char-
acterization of the "vague torus" [3] associated with reso-
nance (m, n) The s. lower P „(q) decays with q, the less
vague the "vague torus" is. There is also a simple rela-
tion [6] between P „(q) and a local correlation function
C „(q) in resonance (m, n) P„(q.) is easily calculated
from the trapping statistics [6], i.e., the probability that
an orbit segment trapped in (m, n) has length qn The.
latter probability can be accurately determined by follow-
ing a large ensemble of su%ciently long chaotic orbits, us-
ing our method. As an example, we plot in Fig. 2 PI 2(q)
for the standard map with K=1.5. PI 2(q) appears to
decay algebraically as q ', with a= 1.6. On the other
hand, for K=3 (see Fig. 3), the initial decay of PI 2(q) is
clearly exponential, as exp( —Pq), with P= 1. An initial
exponential decay of P~ „(q) has been observed to
emerge, for all the resonances considered, when K is in-
creased beyond the accumulation point K „of the
period-doubling sequence of the central elliptic point in

the resonance. As K approaches K „ from below
(above), a (P) increases (decreases). The occurrence of
an initial exponential decay of P „(q), following the de-
struction of the main (frequency —,

' ) island-around-island
hierarchy [I], is physically obvious. In fact, in this case,
the resonance interior appears to be completely chaotic
(without stability regions) for short time scales. Howev-
er, for sufficiently long time scales, the stickiness eA'ect

[6] near the boundaries of small, secondary stability re-
gions in (m, n) should manifest itself in an algebraic [16]
asymptotic decay of P „(q). The presence of such an
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FIG. 3. Semilogarithmic plot of the survival probability in

resonance (1,2) of the standard map at K =3.0, calculated as
described in the caption of Fig. 2. The length of each chaotic
orbit considered is here 20000 iterations.

asymptotic decay could not be ascertained because of the
limited accuracy of our calculations. We hope to report
the results of more accurate calculations in a future work.

As a second application, we consider the average dwel-
ling time T „ in a resonance (m, n), which we define as
the normalized quantity T „=M „/M. Here M „ is
the number of points belonging to trapped-orbit segments
in (m, n), and M is the total number of orbit points in a
large ensemble of sufficiently long chaotic orbits (see cap-
tion of Fig. 2). Clearly, T „ is the average fraction of
time spent in the vague torus (m, n), performing there
quasiregular motion with winding number m/n. Our cal-
culations for the standard map, in quadruple-precision
arithmetic, indicate that T „depends on (m, n) and K
only through the residue [15] R of the hyperbolic ordered
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I IG. 4. Log-log plot of the average dwelling time in reso-
nances of the standard map at K =1.5, as a function of the resi-
due R of the corresponding hyperbolic ordered periodic orbits.
All resonances (m, n) with n ~ 26 and m ~ n have been con-
sidered. The straight line best fitting the data has slope
= —0.89. Approximately the same slope has been measured
also for other values of K.

We have performed [14] extensive calculations of Av for
the tent map [17], using our method to determine the
types of UPOs. At a fixed value of v, the function Av(S),
where 5 is the action of a UPO per iteration, appears to
be much more well behaved than o(S), the Lyapunov ex-
ponent. In particular, near hv =0, Av(S) is always
monotonously increasing. This is consistent with the
known [7] fact that the hyperbolic ordered periodic orbits
(with, of course, Av=0) minimize S at fixed v. We ex-
pect these results to extend to more generic maps, like the
standard map. The parameter h, v may turn out to be use-
ful in several interesting applications, e.g. , in a systematic
resummation of Gutzwiller trace formula for semiclassi-
cal quantization [18].

The author would like to thank Professor M. V. Berry,
Professor B. Eckardt, Professor S. Fishman, Professor K.
Khanin, and Professor U. Smilansky for helpful com-
ments and discussions.

periodic orbit. The function T(R) appears to satisfy a
scaling law T(R) ~ iRi ", with @=0.87+ 0.02. An ex-
ample is shown in Fig. 4 for K=1.5. Now, it is known
[9] that the area 2 of a resonance also scales with R as
A(R) ~ iRi . This is evidence for ergodicity in the
chaotic region (equal times spent in equal areas), provid-
ed the fraction of resonance area occupied by the chaotic
component scales approximately as iRi . This is plau-
sible, but, of course, remains to be checked independent-
ly.

In conclusion, we have presented a simple method for
determining the type of chaotic orbits in reversible area-
preserving maps. As first applications of this method, we
have studied the survival probabilities and average dwel-
ling times within resonances, as characterizations of
"vague tori. " Work is in progress concerning two other
interesting applications of the method: (a) spectral
analysis of chaotic orbits [5] trapped within resonances,
so as to probe the island-around-island structure; and (b)
studying the behavior of a disorder parameter, character-
izing quasiregularity, as a function of dynamical quanti-
ties of interest. Such a parameter may be associated with
unstable periodic orbits (UPOs) in the chaotic region,
and defined at fixed winding number v. Let the type of a
UPO be [8] z =[(mI, nI)~„. . . , (mg, n~)~„] (R reso-
nances involved) with winding number v =Z„=Iq„mJ
Q, =Iq„n, . We then define the disorder parameter Av as
follows:

R R
hv= P q„n„(m„/n„—v) g q, n„
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