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Calculation of Langmuir States in Doubly Excited Helium
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We have identified a class of high-lying doubly excited resonances in helium which are directly linked
to a classical orbit first proposed by Langmuir for the quantization of helium. The projection of the
wave function onto three mutually orthogonal planes is shown to trace the Langmuir orbit. This class of
resonances forms the top of the intrashell manifold, and are long-lived compared to other members of
the same manifold. In the limit Z— oo, the wave function traces the modified, asymmetric Langmuir
orbit generated by bifurcation of the Langmuir orbit.

PACS numbers: 31.50.+w, 03.65.Sq, 31.20.Tz

The internal structure of resonances in the isoelectronic
sequence of helium have become the paradigm for our
understanding of the three-body Coulomb problem, one
of the most fundamental “simple,” and yet nonseparable
few-body problems. Since the experimental identification
of low-lying doubly excited states in helium [1], it was
recognized [2] that their existence hinges on a highly
correlated motion of the two electrons maintaining a deli-
cate balance of repulsive and attractive fields. The
strength of electron-electron correlation prevents a
description in terms of a perturbation theory for weakly
perturbed independent particle states. Considerable pro-
gress has been achieved since in the experimental
identification [3], classification [4,5], and calculation
[6,7] of low-lying doubly excited states.

The interpretation and analysis of the internal struc-
ture of doubly excited states have frequently involved
classical pictures for the strongly correlated (“collec-
tive”) motion. A quantitative test of their validity was,
however, difficult since the de Broglie wavelength of the
electronic motion is for low-lying states comparable to
the size of the orbit, {r), thereby preventing an unambi-
guous classical-quantum correspondence. This situation
has dramatically changed with the recent advent of mul-
tiphoton laser excitation experiments [8], where high-
lying doubly excited states with both electrons at large
principal quantum numbers N,n of 10 and higher can be
accessed. Here we use the notation N (n) for smaller
(larger) of the two principal quantum numbers. In this
regime where ()= 100Z ~!, the quantum wave function
begins to mimic the underlying classical dynamics. Clas-
sical models for correlated electron motion can be direct-
ly tested against properties of quantum states.

The structure of the classical phase space, in particu-
lar, the properties of periodic orbits [9,10] and their semi-
classical (i.e., Bohr-Sommerfeld) quantization played an
important role in the “old quantum theory” of helium
[11]. Several orbits had been suggested in the early
1920s, one of which is due to Langmuir [12] and which
corresponds to a planar configuration with two electrons
performing bending vibrations as a possible classical real-
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ization of a two-electron orbit with total quantum num-
ber L =0 [Fig. 1(a)]. This periodic Langmuir orbit (LO)
represents a collective, completely correlated motion of
two equivalent electrons with |r;| =|r,|, distinctly differ-
ent from any independent particle motion on (distorted)
Kepler orbits.

Only recently Richter and Wintgen [13] discovered
that the phase space near the LO is stable. For the stable
island around the LO a rigorous torus (Einstein-Brill-
ouin-Keller, EBK) quantization can be carried out [14].
It results in a double Rydberg series with energies
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FIG. 1. (a) Langmuir orbit at Z=2; (b) asymmetric Lang-
muir orbit after the bifurcation at Z=5.60 for Z =10, 20, 50,
100, 200, and 500. The energy for each trajectory is —Z in
a.u., so the length scales become comparable.
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where S is the classical action along the Langmuir orbit
at the energy £F=—1 a.u. and y; is a quantum defect
which depends on classical winding numbers. For heli-
um, i.e., Z=2 we find S, =1.35 and u; =0.27 [14].
These “Langmuir states,” which reside on tori, are classi-
cally stable; i.e., they decay only via tunneling or radia-
tive processes. This implies the existence of a double
Rydberg series of narrow resonances extremely close to
the double ionization threshold.

The semiclassical quantization permits the identifica-
tion of quantum numbers of the 3-torus: Langmuir states
represent a realization of the maximum bending vibration

=—(N—1) in the (NnKT)“ classification scheme for
doubly excited states [4], with N=n, 4=+, and T=0
(for 'S states). They describe two electrons ““atop each
other” [15]. The latter follows from the fact that the
electrons spend most of their time near the turning point
[Fig. 1(a)]l. Langmuir states are the highest-lying state
within an intrashell manifold. Semiclassical EBK quanti-
zation is, however, rigorously valid only when the classi-
cally stable island has a phase space volume of A neces-
sary for accommodating at least one quantum state. This
requirement is only satisfied for principal quantum num-
bers N > 500, currently out of reach for experiments as
well as quantum calculations.

The identification of the top edge of the intrashell man-
ifold with Langmuir states in the semiclassical limit
N — oo suggests that corresponding quantum states at in-
termediate N should bear the signatures of the LO. In
the following, we present a first evidence that full quan-
tum mechanical wave functions for higher-lying states be-
gin, indeed, to trace the Langmuir orbit, thereby
confirming the original conjecture by Langmuir of some
70 years ago.

Our ab initio calculation employs standard stabiliza-
tion-complex rotation techniques [7,16-18]. Briefly, we
expand the 'S wave function in terms of coupled Sturmi-
an functions, Si(x), as

M
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The complex Hamiltonian for the three-body Coulomb
problem
V4 V4 1
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is diagonalized in the basis (2); the angle of complex ro-
tation is denoted by B. In (3) we treat the nuclear mass
to be infinite thereby neglecting mass polarization effects.
Approximate complex eigenvalues are obtained from the
conditions dE/do==0, dE/dB =0, and dE/M =0 where
M is the dimension of the basis (up to 2000). We include
configurations with 1 <n,,=<19,0=</,,=<18. In addi-
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tion, we also consider asymmetric configurations with 20
=m =25, n1=12,/,,=<11. As usual, the real part
of E describes the position while the negative imaginary
part describes the half-width of the resonance. The ex-
pansion in terms of single-particle orbitals rather than
Hylleraas-type basis has the drawback that a larger basis
size is required for representing wave functions with
significant density at small interelectronic distances
ri2=|ri—ra|. Because of the Coulomb repulsion, the
weight of this regime is, however, small for highly excited
states. Even for the Langmuir orbit, where the two elec-
trons suffer a head-on collision [Fig. 1(a)], the distance of
closest approach at, for example, an energy corresponding
to N=10is r12=50 a.u. On the other hand, the expan-
sion (2) has the advantage to converge rapidly in the lim-
it Z— oo to be discussed below. Moreover, it permits the
straightforward decomposition into single-particle angu-
lar momentum components / of the wave function. The
latter feature has proven to be extremely helpful in
identification of resonances in the region of overlapping
manifolds. For moderately excited resonances our results
can be checked against the pioneering calculations by Ho
[7], and more recent calculations of Richter and Wintgen
for ‘“‘planetary states” [19] representing asymmetric exci-
tations with {r{) = (r,)/3. We typically find agreement to
three significant digits with Ref. [7] results and to six di-
gits with Ref. [19] for the positions of the resonances.
Larger deviations occur for the width.

The key point in the search for Langmuir states is the
extrapolation of the semiclassical WKB-type energy for-
mula [Eq. (1)] as a first step in identifying possible “can-
didates” for intrashell resonances in the regime of over-
lapping manifolds. In the second step, we determine the
single-particle / distribution which is distinctly different
for different classes of resonances. LO states K= — (N
— 1) are characterized by a large weight at high angular
momenta (/= N), which contrasts with the angular
momentum distribution for K =/N —1 states, where the
high / components are exponentially suppressed [15]. Fi-
nally, we project the density of the wave function
P(R,a,0) =|¢p(R,a,0)|? where 6=cos ~'(f},f;), R=(rf
+r3)'2, a=tan "'(ro/r\) are hyperspherical coordi-
nates, onto the three mutually orthogonal planes (a,8),
(R,0), and (ry,r;) by integrating over R, a, and 6, re-
spectively.

The projections of the density of the N=n=10, K
= —9 state (Fig. 2) traces, indeed, the LO in remarkable
detail. The density is strongly enhanced near the classi-
cal turning point (=24°). Furthermore, the distortion
of the semicircular orbit due to the interelectronic
Coulomb repulsion, which leads to a slight increase of the
hyperradius R near the turning point, is accurately repro-
duced by the quantal density distribution (see the R-6
plane). Another feature in the a-6 plane is worth noting:
While the dominant part of the probability density, which
is located at 8 <90°, is peaked at a =45°, it spreads out
over a =45° *+ § for 6> 90°, where 6= 15° for N=10.
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FIG. 2. Langmuir state ('S¢) N=n=10, K= —29 for helium (Z=2) projected onto (a) R-8, (b) a-6, and (c) r-r; planes. The

solid line shows the projection of the Langmuir orbit.

With increasing N, & decreases and in the semiclassical
limit limy — 6 =0. This behavior reflects the semiclassi-
cal dynamics near the saddle in the effective potential in
the a direction and will be discussed elsewhere [14].

The present findings that for sufficiently large N Lang-
muir states form the top of the intrashell manifold can be
easily reconciled with the recent observation that “plane-
tary” states, i.e., states where the outer electron is bound
in a well formed by Coulomb attraction at large distances
and a repulsive dipole barrier at small distances form the
top of the manifold for lower NV states. The key point is
that the semiclassical energy for planetary states [19]

E planetary (N) = —2.22/(N +0.01) %, 4)

where N—1 equals the number of nodes along the so-
called “planetary orbit,” becomes almost degenerate with
the WKB energies of the Langmuir orbit [Eq. (1)] for
N =3-5. For low N, the K=—(N—1) wave function
represents a mixture of a planetary component with den-
sity near {r;?)={(r,)/3 and a = 20° and a Langmuir com-
ponent with density at (r{)={(r,) and a =45°. Only as N
becomes large the quasidegeneracy is lifted and ‘“‘pure”
Langmuir and planetary states start to develop. Plane-
tary states lie energetically below Langmuir states and
are not intrashell states in the sense of symmetric excita-
tion, {r)={(ry).

For the width of the Langmuir resonances we find an
approximate scaling rule

r(N)=2.0N "*a.u. (5)

The estimate (5) is derived from an interpolation between
the width calculated by complex rotation for N=7-11
and the classical lifetime of phase space distributions rep-
resenting a quantum state near the Langmuir orbit for
energies corresponding to N > 100. The uncertainty of
(5) is considerably larger than the extrapolation of the
EBK estimates for position of resonances [Eq. (1)1, which
reproduces the full quantum results remarkably well.
Note that for N = 500, semiclassically I'=0 as a quan-
tum state fits inside the stable island. The width due to
tunneling for N > 500 will decay exponentially as a func-
tion of NV rather than with a power law [Eq. (5)]. Anoth-

er possible decay channel would be radiative deexcitation.
However, since both electrons are far from the nucleus
(i.e.,, {p) small), radiative decay rates are presumably
exceedingly small.

For small Z, Langmuir resonances are embedded in
overlapping intershell as well as intrashell manifolds,
thereby making their identification very difficult. In the
limit Z— oo, on the other hand, different manifolds
remain well separated and the group-theoretical O(4)
DESB states [4] provide an approximate representation
of intrashell states. We have investigated the shape of
the wave functions at the top of the manifold for large N
using both the basis expansion [Eq. (2)] and the DESB.
The density distribution (Fig. 3) does not resemble the
Langmuir orbit [Fig. 1(a)] but the modified, asymmetric
Langmuir orbit [Fig. 1(b)]. The latter is a direct signa-
ture of the bifurcation of the classical phase space struc-
ture. At Z =5.60 the Langmuir orbit bifurcates into the
asymmetric Langmuir orbit where the electrons follow to
semielliptic trajectories. In the limit Z— oo, this asym-
metric Langmuir orbit degenerates to a ‘‘symmetric
stretch” mode, however, with both electrons on the same
side of the nucleus. Accordingly, the wave function is
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FIG. 3. Projection of the probability density of the K

= —(N—1) states in the limit Z— o in the ri-r; plane. (a)
N =7 using basis expansion [Eq. (2)]. (b) N =28 (DESB
state). In (a) we also show the projection of the asymmetric
Langmuir orbit in the limit Z— oo. (The low density close to
the nucleus is due to the high velocity of the electrons in this re-
gion.)
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aligned along the direction of the hyperradius R with
fixed @ =45° or 6=0°, in complete accord with predic-
tions of classical dynamics. This motion could also prop-
erly be described as “riding on the Wannier ridge,” since
the motion perpendicular to the ridge (along the a direc-
tion) is reduced to zero-point fluctuations. With increas-
ing N and shorter wavelength, the condensation along the
Wannier ridge becomes more pronounced (Fig. 3).

In summary, we have investigated high-lying reso-
nances at the top of the intrashell manifold [K=— (N
—1)] in both helium (Z =2) as well the limit of nonover-
lapping manifolds (Z— o). We find wave functions for
helium closely resembling Langmuir’s model for correlat-
ed two-electron motion while in the limit Z-— o the
wave function traces a modified asymmetric Langmuir
orbit originating from a bifurcation of the Langmuir orbit
with increasing Z— o©. We also find that for lower
N(<6), the K=—(NV—1) states lose the signature of a
single classical orbit but appear to reflect a mixture of a
planetary and a Langmuir orbit. The latter is expected in
view of the near degeneracy of the energy as predicted by
a WKB-type quantization and in view of the increase of
the de Broglie wavelength which tends to destroy a direct
classical-quantum correspondence.
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