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We propose a new type of resonant-mass gravitational wave detector, a truncated icosahedral gravita-
tional wave antenna. It will be omnidirectional, and able to measure the direction and polarization of a
detected wave. We solve a model for this system, calculate the strain noise spectrum, and conclude that
its angle-averaged energy sensitivity will be 56 times better than the equivalent bar-type antenna with

the same noise temperature.

PACS numbers: 04.80.+z, 06.70.Dn

Confirmed detection of gravitational waves from astro-
physical sources will found a new astronomy, and allow
direct investigation of the gravitational force under ex-
treme conditions. The best current antennas, such as the
LSU detector [1], are sensitive enough to detect a gravi-
tational collapse in our galaxy, but the conventional wis-
dom is that we need to look at least 103 farther in dis-
tance to have an “‘assured” event rate of several per year.
This requires reducing the energy resolution by 10%. The
best known methods for improving cryogenic resonant-
mass detectors will contribute by reducing the energy
resolution in proportion to the reduction of the noise tem-
perature T, from its current value of ~7 mK. However,
it is commonly believed that quantum noise will present a
formidable barrier for improvement by more than 10
not quite enough for assured detection.

However, there are other ways to improve resonant-
mass antennas that are independent of 7,,. One way is to
increase the cross section. Another is to make multiple
antennas, aimed in different directions, so every source
direction and polarization will be within at least one an-
tenna pattern. This method adds the ability to determine
source direction and polarization. A spherical antenna
promises to provide all three improvements in a single
instrument.

The question becomes the actual magnitude of these
improvements. We have invented a design for a nearly
spherical antenna, which we call a truncated icosahedral
gravitational wave antenna (TIGA), that provides an
elegant solution to certain complications of a spherical
antenna, and therefore lets us calculate the quantitative
improvement. We conclude that a TIGA will be about
56 times more sensitive in energy than the equivalent
bar-type antenna with the same noise temperature T,.
Combined with a quantum limited 7,, this is a sufficient
factor to increase our range by more than the desired fac-
tor of 103, If we assume construction of a set of detectors
for different frequencies, or “xylophone,” the sensitivity is
further improved and wave form information can be ob-
tained.

It was recognized long ago [2] that a sphere is a very
natural shape for a resonant detector of gravitational
waves. A free sphere has 5 degenerate quadrupole modes
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of vibration that will interact strongly with a wave, a bar
has only 1. Each free mode can act as a separate anten-
na, oriented towards a different polarization or direction.
Wagoner and Paik [3] found a set of equations to deter-
mine the source direction from the free mode amplitudes.
They also calculated the angle-averaged energy absorp-
tion cross section of a sphere. Compared to a bar with
the same quadrupole mode frequency and a typical
length/diameter =4.2, the improvement in cross section is
about a factor of 60.

This result has been ignored, perhaps because a free
spherical resonator is not a practical detector. The first
requirement for practicality is a set of secondary modes
or mechanical resonators. Every successful cryogenic
bar-type detector has required one; it acts as a mech-
anical-impedance transformer between the primary mode
of the antenna and the actual motion sensor, supplying an
essential increase in the coupling. We expect that a
sphere with 5 primary modes will require at least 5 secon-
dary resonators. The second requirement is a clear
method for orientational deconvolution of the signal, so
we can determine its direction and polarization. The
third requirement is a way to quantify the noise from
multiple motion sensors.

It is not hard to imagine that the presumed advantages
of a sphere might be lost due to these complications. To
convince the skeptics, including ourselves, a detailed pro-
posal and calculation is necessary. Our analysis is an ex-
tension, to multimode antennas, of the type developed by
Michelson and Taber [4,5].

To derive a first order theory for a practical detector,
we start with the elastic theory for a free sphere [6] with
mass m; and radius R, and consider only the 5 lowest or-
der (degenerate) quadrupole modes, with resonant fre-
quency w;. It is convenient to define an amplitude vector
a(t), whose components are the amplitudes of these
modes.

The successful secondary resonators used on bar anten-
nas couple to motion normal to the antenna surface, so
we restrict our consideration to that type. The one-
dimensional resonators are assumed identical, with mass
m, and spring constant k,, and tuned to the sphere fre-

quency, so that k,/m, =@2 We define a transducer vec-
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tor q(z), whose components are the radial displacement
of each resonator mass, relative to the sphere surface.
Because the radial motion of the mth free sphere mode is
proportional to the spherical harmonic Y,,, the geo-
metric properties of a particular transducer arrangement
are summarized by the 5X%J “pattern matrix” B, defined
by Bmi= Yzm(()j,q)j), where J is the number of resonators
and (6;,¢;) is the location of transducer j.

After some algebra, the model becomes a set of 5+.J
coupled harmonic oscillators, driven by the effective
forces F applied to the free sphere modes, and resonator
forces f, applied between the resonator and the sphere

surface.
mgI 0 | |d(@) mswfl —kaB| |a(r)
maBT m1| i@ Y| 0 k1 [[|q®

I —aB| |[F()
“lo 1 ||[r0] @
The constant «a is determined by the elastic properties and
the eigenfunctions.

The final readout of the system is a set of motion sen-
sors, consisting of a transducer and a linear amplifier, one
for each secondary resonator, which provide continuous
outputs proportional to the displacements q(z).

For a gravitational wave traveling on the z axis, with
the two polarization components 4 +(¢) and A, (z), we cal-
culate the effective force components to be

Fi=m;(0.601R) L b+ (1), F;=m;(0.601R) L h,(¢),
F3=F4=F5 =0.

For a wave from an arbitrary direction, the rotation ma-
trix needed to transform F into this form [3] provides the
complete orientational deconvolution of the signal.

Thus a primary task of antenna design is to find the op-
timum way to infer the components of F(z) from noisy
measurements of q(z), in presence of noise forces f(z).
The equations can be solved for any arbitrary pattern B
of transducers, but the result is so complicated, with all
the components of F appearing in all the outputs q, each
with complicated frequency dependence, that deconvolu-
tion in both space and time looks to be very tedious, and
optimization even more difficult.

Therefore we propose a resonator pattern with special
symmetry: Six resonators arranged to match half the
face-centers of a dodecahedron concentric to the spherical
antenna. We also propose to replace the sphere mass by
a truncated icosahedron (TI), because it has the same
symmetry as the dodecahedral array, plus it has extra
faces suitable for mounting calibrators, suspension ele-
ments, etc. This shape is shown in Fig. 1 with the pro-
posed resonator locations. It is interesting that this
shape, arrived at because of its symmetry properties rela-
tive to the spherical harmonics of order 2, is also the
shape of the Cg atom, or “buckyball.” The special sym-
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FIG. 1. The truncated icosahedral gravitational wave anten-
na (TIGA) with secondary resonator locations indicated.

metry of the TI arrangement is signaled by the special
property of its pattern matrix:

B-BT= __3__1 ) )

2r
Unique among the patterns we have examined, the TI
arrangement has a very simple spectrum of coupled-mode
eigenfrequencies: there are two degenerate quintuplets,
one downshifted to w—, and the other upshifted a nearly
equal amount to @w+, and a singlet remains at w;. The
algebra to diagonalize Eq. (1) is lengthy but becomes
straightforward after one finds a special choice for the
eigenvectors of the degenerate modes and makes repeated

use of Eq. (2).
That solution becomes even simpler if we define 5
linear combinations of the outputs, which we call the

“mode channels,” by

g(t)=B-q().

Then, in the frequency domain, the mode channels’
responses to the forces are given by the remarkably sim-
ple expression

(0) = Cc+ _ c- F(w)
& (wi—0? (02 —0?) | (mm)'"?
+ d+ _ d_ B f(w)
(0wi—0?) (0:—0?) my

where ¢ + and d + are constants of order one that depend
weakly on n1,/m;.

Because g and F are proportional, each mode channel
is a direct readout for the corresponding component of
the gravitational force F. Further, the frequency depen-
dence is exactly like that of a bar-type antenna with one
secondary resonator, so we can adopt familiar methods
for filtering and optimization. The correlations of the
force and additive noises are easily taken into account.
Thus all the readout complications mentioned above are
solved.

It might be argued that our result is questionable be-
cause the free modes cannot be exactly degenerate, the



VOLUME 70, NUMBER 16

PHYSICAL REVIEW LETTERS

19 APRIL 1993

transducers cannot be exactly matched, etc. But when
these effects are included, we expect to find that the
overall sensitivity depends on them only in second order,
for the same reasons that mistuning of similar parameters
has proven to have only second order effects on the sensi-
tivity of a bar with one resonator [7].

We find this configuration gratifying in its symmetry
and simplicity, but there may be alternatives. The Stan-
ford group is analyzing another configuration [8].

A noise model is needed to predict the signal-to-noise
ratio. In this paper we consider only motion sensor noise.
(The extension to thermal noise is straightforward.) We
model the sensor noise in a generic fashion, similar to
Price [9]. Each of the motion sensors is assumed to have
an additive noise at its output whose spectral density
(double-sided) is S,. Each also applies a “back action”
noise force to the resonator mass with spectral density Sy.
We assume the sensors to be uncorrelated but identical.
Then the sensor noise temperature 7, can be shown to be
given by kT, = (S;w2S,) 2. We refer to it by the noise
number N=k;T,/hw;, the noise temperature normalized
by the quantum of energy. The results also depend on
the coupling parameter r, = (Sy/w2S,) "2, called the noise
resistance.

To display the results, we introduce the use of a strain
noise spectrum A (f) for the description of a resonant-type
antennae, in close analogy to its use with the Laser Inter-
ferometer Gravitational Observatory (LIGO) prototypes
[10]. It is the square root of the fictitious strain noise
spectral density (single-sided) needed to mimic the ob-
served noise present at a single channel. It has the virtue
of allowing definite predictions for the detectability of an
arbitrary signal wave form, assuming the noise is station-
ary.

The calculated strain noise is found to be proportional
to vV, so that
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FIG. 2. The calculated strain noise spectrum #(f) for vari-
ous detectors. Solid lines: for a “xylophone” of TIGA detectors
with quantum limited sensor noise, for a single channel (i.e., a
single linear polarization arriving from an arbitrary direction).
Dashed lines: a xylophone of equivalent bar antennas with
quantum limited sensor noise, for the optimum orientation of
the wave. Dotted line: for the first generation LIGO detector,
for the optimum orientation of the wave [10].

h(f,N)=VNh(f N=1).

The solid lines in Fig. 2 show A (f,N=1), the strain noise
for the quantum noise limited case, for a xylophone of
TIGAs made of aluminum. The shape of the curves is
determined by m,/m; and r,, which were adjusted to give
a consistent fractional bandwidth and a maximally flat
curve. Parameters of the xylophone are shown in Table I.

For comparison, the corresponding results for the
equivalent bars in the most favorable orientation for that
same strain component are shown as the dashed lines in
Fig. 2. The strain noise A (f,N=1) for the equivalent bar
is bigger by a factor of 3.9. We conclude that under
equivalent conditions (i.e., equal noise numbers) a single
channel of a TIGA will have 3.92=15 times better ener-
gy resolution than the optimally oriented equivalent bar.
This is nearly the same improvement calculated by scal-
ing up the mass of the bar by this amount, so we conclude
that a single channel of the TIGA suffers no signal-to-
noise penalty due to the various complications in the
readout.

The comparisons in Fig. 2 understate the overall ad-
vantage of the TIGA for the detection of gravitational
waves. It has four more output channels that are op-
timally oriented for other polarizations and directions.
For a bar detector, it is well known that averaging over
source direction and polarization [11] leads to a loss of
energy resolution, compared to the optimum, by a factor
of 15/4=3.7. Thus the net result is that the angle-
averaged energy resolution of the TIGA is 3.7%15=56
times better than the equivalent bar detector (or about
7.5 times better in A).

The technical feasibility of approaching the quantum
limited noise temperature, i.e., of reaching N=1, is
largely independent of whether the detector is a bar or a
sphere. Evaluating the feasibility is not the subject of
this paper, but we maintain that there have been experi-
mental demonstrations of nearly all of the individual fac-
tors needed to reach the quantum limit, the latest being
the demonstration, by the Rome group, of the cooling of
a 2 tonne bar to 60 mK [12]. The challenge is the in-
tegration of these factors into a complete system.

By inspection, the xylophone also has the ability to pro-

TABLE 1. Parameters for the “xylophone” of TIGA detec-
tors shown as the solid lines in Fig. 1. The material is alumi-

num.

Resonator
Frequency Radius TIGA mass mass
(Hz) (m) (kg) (kg)
1000 1.30 25100 9.02
1250 1.04 12800 4.62
1500 0.87 7400 2.67
1750 0.74 4700 1.68
2000 0.65 3100 1.13

2369



VOLUME 70, NUMBER 16

PHYSICAL REVIEW LETTERS

19 APRIL 1993

vide substantial spectral information about the detected
wave. Coherent recording of the outputs will allow rela-
tive phase measurement, hence reconstruction of the time
dependence of the wave form.

Also shown for comparison in Fig. 2 (dotted line) is the
predicted strain noise for the first generation LIGO
detector [10] in its most favorable orientation for the
same signal. It is evident that a xylophone of quantum
limited TIGAs is significantly more sensitive over most of
this frequency range, even without considering the extra
information available about orientation. However, the
predicted LIGO strain noise continues dropping, propor-
tional to frequency f, down to f~100 Hz. We conclude
that the two detector types are complimentary, each hav-
ing a frequency domain where the predicted sensitivities
are superior.
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