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Forced Shear Flow of Magnetic Bubble Arrays
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We present direct experimental observations of collective transport in two-dimensional magnetic bub-
ble arrays in thin garnet films. Shear How is produced by forcing the array to move past a Oat interface;
the array is strongly pinned on the other side of the interface. Time-resolved images of the dislocation
dynamics that produce shear How are obtained via Voronoi constructions.

PACS numbers: 75.70.Kw, 62.40.+i, S1.40.—z

Forced flow of two-dimensional (2D) arrays subject to
a disordered external potential is common to a variety of
physical phenomena: vortex arrays in type II supercon-
ductors, charge density waves, fluids in porous media,
domain wall motion in random magnets, and Wigner
crystals on thin He films [1,2]. Vortex arrays in high-
T, superconductors have attracted considerable interest
[3] because their motion causes dissipation. Traditional
thermally assisted flux flow theories [4] ignore interac-
tions between vortices and predict thermally activated
vortex motion. Melting theories [5-7] predict that the
shear viscosity of the array is important even in the pres-
ence of disorder; the shear viscosity increases as the liquid
transforms into a hexatic and then a hexatic glass.
Theories based on spin glasses [8] predict that the array
becomes glassy at high densities due to the eA'ects of dis-
order, and that the shear layer thickness exceeds the
translational correlation length. Direct measurements of
flow patterns and defect motion are desirable to test the
basic assumptions made in these theories, but this rnicro-
scopic information is not available in most experiments.
Numerical simulations [9] are limited by computational
time for large systems.

In this Letter we present direct experimental observa-
tions of collective transport and shear flow of 2D magnet-
ic bubble arrays in thin garnet films. We track the
motion of topological defects which causes macroscopic
shear flow, and present measurements of the density
dependence of characteristic flow parameters. Previously
we showed [10] that bubble arrays undergo a hexatic-to-
liquid melting transition as a function of density, and that
a small amount of substrate roughness destroys transla-
tional order so that a hexatic glass [6] is the most ordered
phase. These observations are analogous to observations
of stationary vortex arrays in high-T, superconductors
[I 1].

Magnetic bubble domains in thin garnet films have
been thoroughly studied for magnetic storage and mag-
neto-optic devices [12]. For this work we used a 7.8-pm
film of Bi-substituted iron garnet (4trM =190 6, Tc„„,
=170'C) with strong growth-induced anisotropy [13].
Details of the sample characteristics and experimental
setup are given elsewhere [10,14]. Magnetic bubbles are
cylindrical domains of magnetization oriented perpendic-

ular to the film with thin (—0. 1 pm) domain walls. Indi-
vidual bubbles are free to move within the film plane and
interact as magnetic dipoles. Our experiments are done
at room temperature within a single crystallite of a large
polycrystalline array of bubbles [10]. The array density p
is controlled by using a perpendicular dc bias magnetic
field Hg opposed to the bubble magnetization to break
bubbles at randomly located positions. The density p de-
creases by an order of magnitude (from 4500 to 500
mm ) as the net bias field increases from 85 to 95 Oe,
while the bubble radius remains essentially constant at
3.3 pm and is uniform from bubble to bubble. A fixed
superimposed perpendicular ac field H„(5 Oe rms at 40
Hz) agitates bubbles to simulate thermal motion [10].
Bubble separations (15 to 45 pm) are much larger than
their radii so that the interaction between bubbles is dipo-
lar. We observe bubbles via the Faraday eAect using an
optical microscope. Time-resolved digitized images are
recorded on a microcomputer. Topological defects in ar-
rays are identified using Voronoi constructions [15].

We use an experimental geometry suggested by Mar-
chetti and Nelson [71, shown in Figs. 1(a) to 1(c). The
lower part of the bubble array is strongly pinned by pho-
tolithographically defined Per malloy disks evaporated
onto the garnet, shown as open circles in Fig. 1; each disk
is 50 A thick and 6 pm in radius. A flat interface
separates the pinned part of the bubble array from the
unpinned part, and the bubble array is continuous across
the interface as shown. An in-plane force F is applied
parallel to the pinning interface by linearly varying the
perpendicular dc bias field using small opposed mag-
netic-field-gradient coils on either side of the sample. In
a simple hydrodynamic model [7], bubble motion is op-
posed by viscous drag:

Here v is the average bubble velocity parallel to F, y is
the coefticient of frictional drag due to substrate rough-
ness in the sample, and g is the shear viscosity due to
bubble-bubble interactions. For moderate values of the
applied force F, the pinned part of the array does not
move, while the portion of the array far from the inter-
face flows uniformly with velocity zb„~k=F/y. In this
model the average flow velocity increases with distance y
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I IG. 1. Forced flow of bubble arrays: Images of size
886x 675 pm show flow under force F produced by gradient
current lc =0.6 A at (a) hexatic glass density p =3935 mm
over time t =45 sec, (b) hexatic p =1862 mm over t =6 sec,
(c) liquid p =792 mm over t =6 sec. Circles represent Per-
malloy sites. Each line represents motion of one bubble in the
time period. Shown to the right of each image are measured
velocity profiles at five values of F indicated by IG in A: Plots
show velocity parallel to F in pm/sec vs position from top of im-
age in pm.

away from the interface as

I. (y) =vb„Ik(I —e '), (2)

where 8=(ri/y) 'l is the width of the shear region.
Experiments were performed by applying a force F

parallel to the interface and observing the motion of indi-
vidual bubbles using a series of time-resolved digitized
images. After 60 sec, the force was turned oA and the ar-
ray was allowed to relax to avoid building up a pressure
gradient opposed to the flow. The force F is proportional
to the magnetic field gradient and to the current Ig in the
gradient coils: A current IG =1 A produces a gradient
dH/dx =0.005 Oe/pm+ 3% over 3000 turn, and a force
F =4&10 dyn on each bubble. We observed flows in

three diA'erent areas of the sample, at 11 values of F
evenly spaced between Ig =0 and 1 A, for 20 values of p
between 4500 and 750 mm spanning the hexatic glass,
hexatic, and liquid.

The left portion of Fig. 1 shows measured flows at
three densities corresponding to a hexatic glass [Fig.
1(a)], a hexatic [Fig. 1(b)], and a liquid [Fig. 1(c)].
Each line represents the recorded motion of one bubble
flowing in response to a force F applied parallel to the in-

terface by a current Ip =0.6 A, over a time period of 45,
6, and 6 sec for Figs. 1(a), 1(b), and 1(c), respectively.
To the right side of each picture we plot measured
profiles of the average bubble velocity parallel to the in-
terface for five increasing values of force. As shown, the
part of the array under the pinning sites does not move
appreciably, while away from the interface the unpinned
array flows uniformly. In Figs. 1(a) and 1(b) bubbles
move along lattice lines for short times. Over longer
times the average flow is parallel to the applied force.
The bulk velocity vb„ik increases approximately linearly
with force for small forces F produced by I6 ~ 0.4 A for
the liquid, IG ~ 1 A for the hexatic, and I~ ~0.6 A for
the hexatic glass. The average velocity increases from
zero at the interface to a uniform value vb„ik well away
from the interface over a shear layer of width 8 which de-
creases with density p.

We find that the forced flow of magnetic bubble arrays
is intimately related to the dynamics of dislocations in the
array. Observations of the shear region indicate that the
gliding motion of interacting dislocations leads to slip
events which add to produce the macroscopic shear flow.
This is illustrated in Fig. 2 by an array of density

p =3459 mm flowing in response to a force produced
by IG =0.5 A, as shown in Figs. 2(1) to 2(3). Figures
2(a) to 2(d) show the positions of dislocations at times
t =0, 15, 30, and 45 sec, respectively; each dislocation is
shown as a fivefold (square) and sevenfold (circle) dis-
clination pair. When the local shear stress becomes large,
a slip event produced by dislocation glide allows the array
to move forward, relaxing the stress locally and transfer-
ring it to other areas. The slip event shown in Fig. 2(l) is
due to a dislocation pair which nucleates and separates as
shown in Fig. 2(a). A bound dislocation pair is repre-
sented by two squares and two circles arranged in a quad-
rupole [10]. A bound pair is created in Fig. 2(a), and the
dislocations separate and glide apart between Figs. 2(a)
and 2(b) as indicated by arrows. One dislocation glides
out of the image, and the other glides into another dislo-
cation present in the array and annihilates as shown. The
slip event in Fig. 2(2) is due to a dislocation gliding to the
right between Figs. 2(b) and 2(c), as indicated by arrows.
The slip event on the right-hand side of Fig. 2(3) is due
to a dislocation gliding in from the right between Figs.
2(c) and 2(d) as indicated. The slip event on the left-
hand side of Fig. 2(3) is due to a dislocation pair that nu-
cleates and separates between Figs. 2(c) and 2(d).

In arrays with lower density p the number of disloca-
tions present is larger, and gliding dislocations collide
more often, making each slip event shorter. In Fig. 3 we
illustrate three basic processes of dislocation motion and
interaction observed in the shear region. Shown in Fig.
3(a) is the nucleation and ionization of a dislocation pair
previously seen in Fig. 2, consistent with stress-induced
pair separation in theoretical studies [16]. This nonlinear
process provides free dislocations and is particularly im-
portant in the flow of the hexatic glass whose equilibrium
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FIG. 3. Dislocation dynamics in shear region: (a) virtual
pairs nucleate and ionize. (b) Gliding dislocations combine.
(e) Dislocations in vacancy pair reorient. Dots represent bub-
bles. Squares and circles represent bubbles with five and seven
adjacent bubbles. Square-circle pairs represent dislocations
with arrows indicating glide. Dashed lines highlight lattice
lines. Solid lines highlight extra rows associated with disloca-
tions.

FIG. 2. Dislocation dynamics in shear flow: (a) tp (d) lm
ages of size 1000x740 pm show dislocation motion in bubble
array with p =3459 mm flowing under a force due to IG =0.5
A at times (a) 0 sec, (b) 15 sec, (c) 30 sec, and (d) 45 sec.
Dots represent bubbles. Solid squares and circles represent
bubbles with five and seven adjacent bubbles. Square-circle
pairs represent dislocations with arrows indicating glide motion.
(1) to (3) show flow over each 15-sec interval. Each line repre-
sents motion of one bubble in the time period. Thick lines
highlight slip events. Dashed lines on either side of (a) to (d)
and (1) to (3) indicate position of the pinning interface.

dislocation concentration is very low. As shown in Fig. 3,
when the local shear stress becomes large the defect-free
hexagonal array in Fig. 3(a.l) distorts to produce a
bound dislocation pair in Fig. 3(a.2). Dislocations in the
shear region with glide directions parallel to the bulk flow

are expected to move in the direction of their Burgers
vectors in order to relax the shear stress [17]. The two
dislocations in Fig. 3(a.2) glide apart in Fig. 3(a.3),
shearing the array as indicated by dashed lines. Similar-
ly, the dislocations in Figs. 3(b. l) and 3(b.2) glide along
the arrows in response to the shear stress. When they
collide in Fig. 3(b.3) they combine into a single disloca-
tion with difI'erent orientation. Dislocations in the vacan-
cy pair in Fig. 3(c.l) reorient in Fig. 3(c.3) so that their
glide directions are parallel to the bulk flow, perhaps via
the excitation of a pair in Fig. 3(c.2).

In Fig. 4(a) we plot the widths 8 determined from
fitting Eq. (2) to measured velocity profiles versus the
bubble density p, together with measured orientational
(gti) and translational ((T) correlation lengths. As
shown, 6 increases from —la in the liquid to —10a in

the hexatic glass; 6—gT at high bubble densities, indicat-
ing that the bubble array does not undergo a freezing
process analogous to a spin glass for which we expect
B))gT [8]. Figure 4(b) shows the frictional drag y due
to substrate roughness measured from the linear response
of vb„~k vs F. At small values of p the measured frictional
drag y is close to y;„measured for isolated bubbles (solid
line), and the drag y increases with density p. The inset
in Fig. 4(b) shows a linear plot of the density dependence
of 1/y, analogous to resistivity measured for vortex arrays
in type I I superconductors. We do not observe the
hexatic-to-liquid transition in 1/y, and the curve extrapo-
lates to zero when the nonequilibrium hexatic becomes a
hexatic glass as the dislocation concentration decreases
[14]. Figure 4(c) shows that the shear viscosity r1=6 y
also increases strongly with density p. Because shear flow
is produced by dislocation glide, the shear viscosity g is
inversely proportional to the dislocation concentration pD
and mobility Bs~;d, [18], both of which are measured to
decrease with increasing density p [10].

In the free-area model [19] the number of dislocations
in an array is proportional to the average free area af
available, which is the dift'erence between the average
area per bubble 1/p in the array and an area 1/po, where
po is the density above which bubbles are so densely
packed that dislocations are absent. When the local free
area surrounding a bubble exceeds a critical value a* it
can escape from its neighbors and become part of a dislo-
cation. A statistical distribution of free area over all bub-
bles [19] gives the diffusion constant for bubble motion,
from which the dislocation concentration is found to be
pD ix pexp[ —ga*pop/(pu —p)], where g is a numerical

]factor between 2 and 1 to correct for overlap of free
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FIG. 4. (a) Measured widths b of the shear region, and
orientational (ge) and translational (gr) correlation lengths of
the bulk, all in units of average lattice spacing a, vs array densi-
ty p. (b) Frictional drag y in Asec/pm. Solid line is y;„
measured for isolated bubbles. Dashed-line fit increases as

@~pe + ' from y;„. Inset: A linear plot of I/y vs p.
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—P)

The numbers indicate the observed phase of the array: 1 =hex-
atic glass, 2 =nonequilibrium hexatic, 3 =equilibrium hexatic,
and 4=liquid. (c) Shear viscosity rt in Asecpm. Dashed line is

a fit tt et:e ' ' (see text).
(ga*+C1)POP/(PO —P)

area. The mobility Bg)'d is given by an Arrhenius model
for the diffusion of dislocations and Einstein's equation
[19]: BsI;d, = v(k8T) 'p 'exp( E/k8T), where —ktt T
is the thermal energy and v is the attempt frequency of
dislocations gliding in the fixed ac field. The energy bar-
rier E for a dislocation to move one step of size p

' in-
creases with array density: E/ke T=Co+ C&p so that
BsId, eep 'exp( —Ctp). As a result, the shear viscosity
tI tx (pDBgIjdg) is given by tI ~ exp[(ga*+ CI )pop/
(po —p)]. A fit to the data in Fig. 4(c) (dashed line)
gives (ga*+Ct)pa=16. 58 and ro=(trpo) '/ =5.4~0.5

pm. The free-area model also describes bulk Aow: Be-
cause the thermal energy is fixed, the diffusion constant
for bubble motion is inversely proportional to the drag y
via Einstein's equation. Therefore the drag increases as
ycc pexp[ga*pop/(po —p)] from y;„. The dashed line fit
in Fig. 4(b) gives ra=7.6~0.7 pm, y;„=0.20~0.16
A sec/pm, which is close to the measured value y;„=0.39
A sec/pm, and the critical size of voids necessary for bub-
ble displacements in the bulk How ga* =163 pm .
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