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Lattice Integrable Systems of Haldane-Shastry Type
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We present a new lattice integrable system in one dimension of the Haldane-Shastry type. It consists
of spins positioned at the static equilibrium positions of particles in a corresponding classical Calogero
system and interacting through an exchange term with strength inversely proportional to the square of
their distance. We achieve this by viewing the Haldane-Shastry system as a high-interaction limit of the
Sutherland system of particles with internal degrees of freedom and identifying the same limit in a cor-
responding Calogero system. The commuting integrals of motion of this system are found using the ex-
change operator formalism.

PACS numbers: 75.10.3m, 05.50.+q

Recently, the interest in spin systems of the Haldane-
Shastry type as well as in integrable systems of particles
with internal degrees of freedom has been revived [1-8].
The Haldane-Shastry model for spin chains and its
SU(N) generalization consists of spins or, in general,
SU(N) color degrees of freedom equally spaced around
the unit circle with the Hamiltonian [1]

zij

where the indices i, j now refer to particles,

(2)

i&l sin [(x;—x, )/2]

where x; are the positions of the spins and P;j is the
operator which exchanges the spins or colors of sites i and
j. Haldane and Shastry found the antiferromagnetic
ground state wave function of the system, which is similar
in form to the ground state wave function of the Suther-
land system of particles on the circle [9], as well as all en-

ergy levels for the system.
Although the above system was suspected to be inte-

grable, and particular commuting integrals of the motion
were sporadically found [2,10], a complete proof was
lacking. Recently, however, Fowler and Minahan [11]
showed the integrability of the system and derived the
conserved quantities using a recently developed exchange
operator formalism [12]. Their approach consists of
working initially with a system of N bosons with internal
degrees of freedom and no kinematics which sit on the N
lattice sites and only allowing states with exactly one par-
ticle per site. Then every operator which is invariant un-
der particle permutation must involve degrees of freedom
on all lattice sites and can thus be substituted with a cor-
responding lattice operator. Integrability of this particle
system, then, translates into integrability for the lattice
system. These authors, then, consider the operators

M;~ are the operators which exchange the positions of
particles, satisfying

M;lx; =x~M;~, M;~xk =xt, M;~ (for i &. k ~j) (3)

as well as the standard permutation group commutation
relations among themselves. The Hamiltonian of the sys-
tem is taken to be

t&l sin2[(x; —xj)/2]
(4)

Using the commutation properties of M;~ and z; one can
show that the quantities

&i &j
tr; =p; +i l g cot M~) + i g M~t

JW$ 2 J&l

=p; —2Ix;

commute among themselves and, if the lattice sites are
equidistant, they also commute with the Hamiltonian.
Therefore this system is integrable. Each operator M;~,
now, acting on a bosonic state translates into a spin ex-
change operator a;l for the particles [8]. Since the I„are
symmetric under particle permutation, every particle spin

exchange operator they contain will translate into a site
spin exchange operator Pj and will reduce to the com-
muting conserved quantities of the corresponding
H aldane-Shastry lattice system.

The above operators z; considered by Fowler and

Minahan are, in fact, identical in form to the correspond-
ing operators considered by this author in the exchange
operator formalism of the Sutherland problem [12], only

lacking an explicit kinetic term. These operators are

and

z; =exp (2trix; ) (from now on we use barred symbols to represent quanti-
ties for the fully dynamical system of particles) while the
Hamiltonian is
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8=+ —,
'

p,'+ g l(l —M,, )
(7)

t(g sin2(x; —xl)
If we rescale z; by a factor of —

2 I ' and take the limit
l ~ we see that the kinetic term drops and we recover

On the other hand, the leading term in H in this limit
(of order I ) becomes a nondynamical constant and can
be subtracted away. The highest nontrivial term then be-
comes exactly of the form (4).

We see therefore that the lattice system can be viewed
as the high-interaction limit of a corresponding Suther-
land model. (The strength of the two-body interaction is
of order l . ) We must be careful, though. In fact, the
limit l ~ is the same as the classical limit h 0 (this
can be seen by restoring h into the problem) and, of
course, the momentum does not become irrelevant in the
classical limit. The point is that p; as an operator has an
unbound spectrum and therefore cannot be neglected no
matter how large l becomes. In order to consistently drop
it we must restrict our attention to states with no momen-
tum excitations. The internal degrees of freedom then
remain the only dynamical variables of the problem. This
also means that in the classical limit I ~ the classical
value of the momentum is zero (since a classical excita-
tion requires a large number of quanta). Thus, the parti-
cles must lie at the positions of their static classical equi-

libriumm,

which, for the Sutherland model, are evenly
spaced on the circle. This gives a natural explanation to
the fact that the system is integrable only when the lat-
tice points are taken to be equidistant [11].

The above suggests a natural generalization: To every
integrable system of particles with internal degrees of
freedom corresponds an integrable lattice system through
an appropriate "classical" limit. In particular, there
should be a lattice system with inverse square interactions
and the lattice points positioned at the equilibrium posi-
tions of the Calogero system. In the remaining of this pa-
per we rigorously establish this fact.

Consider the N-body Calogero system with potential
[i 31

I 2

V =g —,
' l tp x; + gj Xij

In order for this system to have a nontrivial classical
equilibrium configuration at the l ~ limit we took the
strength of the harmonic oscillator potential to scale as
1', else the particles will either collapse to the origin or Ay

away to infinity. Then, following Fowler and Minahan,
we consider a system of particles with internal degrees of
freedom with the Hamiltonian

fore equal to 1, and the x; satisfy

x; —g, =0.2

j~l Xij

Consider then the operators

(i 0)

F7; =p;+le; . (i 2)

Similarly, the Hamiltonian (9) can be thought of as the
large-I limit of the full Hamiltonian

H=Hp+g 2 l x;,

8,=g —,
' z,' =g ,' p,

' iH—+g- I 2

E i&j Xij
(i 4)

after dropping trivial nondynamical terms of order I .
Since the operators tt commute [12], we immediately ob-
tain

[~, , ~l] =0. (I s)

The commutation properties of z; with 0 can be calculat-
ed directly. All the labor can be saved, however, by tak-
ing the relation

[Z, , 8p] =0 (16)

and expanding in powers of l. Since it holds for all l,
each term must separately vanish. The term of order l
gives

1
p;, Z

i&j Xij

—[~;,H] =0

and we immediately obtain

[~,, H] =g
j~l xlj

Again, following [12], consider the operators

ai Rl + 1XI y ai R/ Ixi

h; =a;ta; =g(tt;z+x ) —gM, ,

(i9)

(20)

The commutation relations of h; can be directly deduced
from the corresponding relations for h; to be

[h;, h~. ] = —2(h;M;J. —M;Jh;) (2i)

j~i XiJ

These can be thought of as the large-l limit of the corre-
sponding operators F7; defined in [12]

H=g
i&j Xij

(9)
l„=gh," (22)

and this means that the permutation symmetric quantities

where the particle positions x; are taken to minimize the
above potential. The parameter m can be absorbed into a
rescaling of the particle positions x; which results in a
mere rescaling of the Hamiltonian (9). We put it there-

commute among themselves. The proof is by now stan-
dard [12] and will not be repeated here.

It remains to show that the I„commute with H. To

2330



VOLUME 70, NUMBER 15 PHYSICAL REVIEW LETTERS 12 APRIL 1993

this end 'we have

[~,0]=~;[~;,H]+ [~;,H]~;

and

J~i xij i~i xij
(23)

j~i xij j ~i xij

IXi &i l7liX (24)

Finally, H being permutation symmetric we have

[M,, 0] =0.
Putting everything together we get

(25)

(26)

(27)

Apart from a nondynamical term (which is twice the
classical rest energy of the Calogero system) it consists
only of a trivial exchange operator. The nontrivial con-

We see that the quantity appearing in the parenthesis
is exactly the equation for classical equilibrium (10).
Therefore, the quantities h;, and consequently also I„,will

commute with the Hamiltonian if the x; are chosen to
correspond to the positions of Calogero particles at rest.

The remaining argument is as in [1 1]. The I„wi]l con-
tain strings of operators M;J which, when acting on total-
ly symmetric (bosonic) states, become strings of opera-
tors o;J. in the reverse order and those, in their turn, can
be substituted by P;J operators. These so-reduced opera-
tors I„ then will constitute the commuting integrals of
motion of a lattice system with Hamiltonian as in (9) but
with the spin exchange operator P;J appearing instead of
the position exchange operator M;J..

The integrals obtained above should contain the Ham-
iltonian itself, but, just as in the Haldane-Shastry model,
they do so in a nontrivial way. In fact, since each h; in

our model contains two exchange operators, as opposed to
only one in x; for the previous model, the form of I„ is

more complicated. The lowest integral Ii is

served quantities are contained in higher I„.
How diAerent is our system from the Haldane-Shastry

systems Conceivably, the diAerent form of the interac-
tion in (9) could conspire with the different lattice spac-
ings to give something similar. It is easy to see, however,
that this is not the case. Even the smallest nontrivial sys-
tems, %=3, are distant: The Haldane-Shastry system
consists of three equal strength exchange interactions,
while our model consists of three interactions with
strengths at the ratio 4:4:1. Further, our system exhibits
no analog of the (lattice) translation invariance of the
Haldane-Shastry system. The dynamical properties of
this system remain an interesting issue.
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