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Using a formalism developed by Polychronakos, we explicitly construct a set of invariants of the
motion for the Haldane-Shastry SU(iV) chain.
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There have been several recent papers on the Hal-
dane-Shastry model for spin chains and its SU(N) gen-
eralization [1-7]. This model is described by the Hamil-
tonlan

where x; are the positions of the spins, equally spaced
around a ring, and P;J is the operator that exchanges the
spins at sites i and j. Haldane and Shastry found the
wave functions for the antiferromagnetic ground state
[1], showing it to be identical in form to the Sutherland
ground state wave function for particles on a line with the
inverse square potential [8]. These authors also found all
possible energy levels for the system.

It would thus seem that the Haldane-Shastry model
and its generalizations are integrable systems. If the
model is integrable, there must exist a set of operators
that commute among themselves and with the Hamiltoni-
an. Inozemtsev found the first such nontrivial operator,
one involving the exchange of three spins [2]. Haldane
later found two others, a four-spin-exchange operator
that commutes with both the Hamiltonian and with
Inozemtsev's operator, and a more basic two-spin-
exchange vector operator he refers to as the rapidity [9].

In this paper we explicitly show that the Haldane-
Shastry model is integrable by constructing a complete
set of operators that commute among themselves and
with the Hamiltonian. These operators are very similar
in structure to those used by Polychronakos [10] in his
exchange operator approach to the Sutherland and Calo-
gero models [8,11,12], and by Polychronakos and one of
the authors in generalizations of these models [13].

The key to our approach is that we consider the system
as a set of N bosons with internal degrees of freedom
which sit on the N sites of the lattice, only allowing states
with one particie per site, as in the infinite-U Hubbard
model. The exchange terms making up the Hamiltonian
provide both the kinetic energy, from hopping exchange
of particles with diAerent internal quantum states, and
the potential energy. The new feature revealed by our
approach is that there are very simple single particle (as
opposed to single site) operators that commute with the
Hamiltonian, analogous to those used by Polychronakos
for the continuum case [10]. This makes it possible to
construct a series of extensive conserved quantities.

j&i zij
(2)

where z; =exp(2trix;/L), x; are the particle positions,
z;J =z; —zJ and M;J is the operator that exchanges the
positions of particles i and j. M;J is a Hermitian operator
that satisfies the relations

AfiJzl ZJMlJ MlJzk =zkM;J if i~k ~j
Mjik Mij Mik Mj k ~ij Mik Mj k ~

Using these relations it is straightforward to show that

[tt;, tr, ] =M;t tr; —tr;I;1,
and therefore

(3)

(4)

The operator z; is very similar to an operator considered
by Polychronakos, the only diAerence being that our
operator does not contain an explicit kinetic term.

Next consider the operator I„,

Computing the commutator of I„with I we find

m —
1—Z Z—

i j a=o

m+n —I

a=n
aM m+ n —a —I

J &J J (7)

Explicitly antisymmetrizing in rn and n then gives

To begin, let us assume that we have N bosonic parti-
cles sitting at diAerent points on the circle. Let us further
assume that the system propagates only by the particles
exchanging their positions. Therefore, if the system
starts with N particles on N diAerent sites, the system
will evolve with one particle on each of these same N
sites. If the bosons had no other quantum numbers be-
sides their positions, then this would be a trivial system.
However, if the bosons have internal degrees of freedom
then we will find a system with nontrivial dynamics.

Inspired by the work of Polychronakos [10], we define
an operator n;,
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Note that the commutation of these operators does not
need the spacing between the sites to be equidistant.

We next relate the In operators to corresponding opera-
tors in the Haldane-Shastry model. Operators in the
Haldane-Shastry model involve the exchange of spins at
particular sites on the lattice. Our operators involve the
exchange of positions of particles that live on each site.
But we can invoke the fact that the particles are identical
to relate the two sets of operators [13]. Let us define an
operator o.;J. that exchanges the spins of two particles, but
not their positions. If the particles are identical, then the
product 0 jM'j acting on a symmetric wave function is
unity. Moreover, since o;J acts on spins and M;J acts on
the positions, the two operators commute with each other.
Hence, if we have a chain of M operators acting on a
symmetric state, we can substitute for it a chain of spin
exchange operators. For example, we can make the sub-
stitution on the following product of operators:

This product of M;J operators is the cyclic exchange
operator for four particles. The corresponding spin prod-
uct is the cyclic exchange of spins in the opposite direc-
tion.

Finally, to relate these spin operators of particles to
spin operators at sites, we note that there is always one
particle at every site. Hence any operator that contains
symmetric sums over all particles can be substituted with
an operator that sums over all sites, and where the spin
exchange operator for particles o.;J., is replaced by the ex-
change operator for sites P;J.. In particular, the operators
ln are now replaced with new operators In. The commu-
tation relations of the In operators will be the same as the
commutation relations for the original operators.

To complete the proof of integrability, we consider the
operator H,

H=QHj,
J

1Hj=g z Mjk
k~j sin ((r/L)(x, —xk)

ZkZj= —4g ~Mjk.
k~j (zkj)'
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We now show that all z; commute with H, if the sites are
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Next consider the commutator

ZjZkZj

of x; with H;. We find
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In general, this expression is not zero. However, if we as-

Zi +Zk ZiZk Zk ZkZ(
4
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Summing over j in (11) and adding the expression in
(12), we are left with

ZiZ(Zk

), M(k(
Zlk Zi1

sume that the sites are equally spaced, then by transla-
tional invariance and the antisymmetry of the summand,
the sum is zero.

Since all x; commute with H then clearly, all In must
commute with H as well. We may now perform the sub-
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(15)
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The last term is just a constant. Symmetrizing the sum
over i, j, and k, we find that I2 reduces to

zi +zJI2=—
2 f'&j &kwi zij

+ — g Mjk — (N —1) .
1 1

6 f~j~k~f 12

stitution of H for H in the same way that I„ is substituted
for I„. Hence all I„commute with H and therefore the
system is integrable.

Having established that the I„ form a commuting set of
operators, we now examine some of these operators ex-
plicitly. The first such operator, I~, is found from I~,
which is given by

(i 4)
f&j zij 2 f~j ziJ

Thus I ~ satisfies
1 N(N —4)I) = ——gP&=- —(s.s),

i&J 4

where 8 is the total spin of the system. This operator
trivially commutes with the Hamiltonian.

A more interesting operator is I2, where I2 is given by

i j &i zfJ. Zik
k&i

Hence we have

1 zi +zJI2= — g Pjk
f &j&k~i zfj'

z;+zJ (,xcr ) S=A S.
2 i+J zlJ

Since the Hamiltonian is isotropic in the total spin, then
each component of A must commute with H. This opera-
tor is the rapidity operator defined by Haldane [8]. Let
us act with this operator on the one magnon state, de-
scribed by the wave function

t y) =gcr+eik"l0) (20)

where l0) is the all spins down state. Acting on this state
with A, gives

' k

+ — g P k
— (N —i).1 1

6 i~j~k~i

The second term is a trivial exchange operator that com-
mutes with the Hamiltonian and the other I„, therefore
the first term must do so as well. To demonstrate the
significance of this operator, let us specialize to the case
of SU(2). The antisymmetric piece of P;~k is given by

i (a; x aj ).ak. Since the first term in (18) has no zk

dependence, it can be reexpressed as

2 f &J zij 2 If 2 i~J zij

1 1+ZJ=—N 2 ' (~, )"I y) =N« —»2) I y) . (2i)
j p1 —zj

Hence the z component of A acts like a momentum operator.
For higher I„,one can show that the leading term is of the form

3 in-i n p (22)
i ' '~ n+1 ii f2 f2 i3 zf zf

This is basically a generalization of the rapidity operator and is not quite of the Inozemtsev-Haldane form for invari-

ants. Since the leading term in I„contains an n-spin exchange term, it must be independent of all I, m & n ~ N, since
I will not have such a term.

Presumably, the Hamiltonian as well as the Inozemtsev-Haldane invariants lurk within our operators, but they fit in a
nontrivial way. For instance, after a particularly tedious calculation one can show that I3 is given by

I, =A, S — A S —A A+ —H — gP + g P...—— g P,,„+C,
4 4 24 i+j 24 i~j ~k ~ i~j ~k~l

(23)

where A2 is

(24)

(25)

zi. + zJ. ZJ +zk
Ap = ——g P(jk ok
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The Hamiltonian explicitly appears in I3, but one can
also show that the z component of Aq acting on the one
magnon state satisfies

Aq, l y) = ——H —(N —I ) g P; + —(N —5 ) l y) .1 1

f&j
zf zjzk

PiJk
i &j &k ziJ'ZJ'kzki

(26)

and other operators that lead to terms cubic in the
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The Hamiltonian and A A acting on the one magnon
state lead to terms quadratic in the momentum, hence all
terms in I3 are basically equivalent to terms containing
the Hamiltonian or the rapidity, at least when acting on
one magnon states. Likewise I4 will contain Inozemtsev's
operator [2],
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momentum when acting on a single magnon.
In conclusion, we have sho~n that the Haldane-

Shastry SU(N) chain is integrable by explicitly con-
structing a set of independent invariants of the motion.
For the discrete case considered here, the Hamiltonian
appears in the third level of invariants. This contrasts to
the Sutherland continuum model, where the Hamiltonian
first appears in the second level of invariants. In general,
I„acting on one magnon states will give n —

1 powers of
the momentum. Hence the I„are like derivative opera-
tors, although there is one less derivative than in the con-
tinuum case.
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